Molecules 2019, 24, 3290
12 of 13
References
1.
2.
3.
4.
5.
Staffell, I.; Scamman, D.; Abad, A.V.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of
hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [CrossRef]
Modisha, P.M.; Ouma, C.N.M.; Garidzirai, R.; Wasserscheid, P.; Bessarabov, D. The Prospect of Hydrogen
Storage Using Liquid Organic Hydrogen Carriers. Energy Fuels 2019, 33, 2778–2796. [CrossRef]
Sotoodeh, F.; Smith, K.J. An overview of the kinetics and catalysis of hydrogen storage on organic liquids.
Can. J. Chem. Eng. 2013, 91, 1477–1490. [CrossRef]
Zhong, H.; Iguchi, M.; Chatterjee, M.; Himeda, Y.; Xu, Q.; Kawanami, H. Formic Acid-Based Liquid Organic
Hydrogen Carrier System with Heterogeneous Catalysts. Adv. Sustain. Syst. 2018, 2, 1700161. [CrossRef]
Li, S.J.; Zhou, Y.T.; Kang, X.; Liu, D.X.; Gu, L.; Zhang, Q.H.; Yan, J.M.; Jiang, Q. A Simple and Effective
Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid. Adv. Mater.
6.
Boddien, A.; Mellmann, D.; Gärtner, F.; Jackstell, R.; Junge, H.; Dyson, P.J.; Laurenczy, G.; Ludwig, R.;
Beller, M. Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst, Science (Washington, DC, USA).
7.
8.
Akbayrak, S.; Tonbul, Y.; Özkar, S. Nanoceria supported palladium(0) nanoparticles: Superb catalyst in
dehydrogenation of formic acid at room temperature. Appl. Catal. B Environ. 2017, 206, 384–392. [CrossRef]
Bi, Q.-Y.; Lin, J.-D.; Liu, Y.-M.; He, H.-Y.; Huang, F.-Q.; Cao, Y. Dehydrogenation of Formic Acid at Room
Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped
Carbon. Angew. Chem. 2016, 128, 12028–12032. [CrossRef]
9.
Li, Z.; Yang, X.; Tsumori, N.; Liu, Z.; Himeda, Y.; Autrey, T.; Xu, Q. Tandem Nitrogen Functionalization
of Porous Carbon: Toward Immobilizing Highly Active Palladium Nanoclusters for Dehydrogenation of
Formic Acid. ACS Catal. 2017, 7, 2720–2724. [CrossRef]
10. Kandile, N.G.; Zaky, H.T.; Mohamed, M.I.; Nasr, A.S.; Ali, Y.G. Extraction and Characterization of Chitosan
from Shrimp Shells. Open J. Org. Polym. Mater. 2018, 8, 33. [CrossRef]
11. Moln
ár, Á. The use of chitosan-based metal catalysts in organic transformations. Coord. Chem. Rev. 2019,
12. Guibal, E. Heterogeneous catalysis on chitosan-based materials: A review. Prog. Polym. Sci. 2005, 30, 71–109.
13. El Kadib, A.; Primo, A.; Molvinger, K.; Bousmina, M.; Brunel, D. Nanosized Vanadium, Tungsten and
Molybdenum Oxide Clusters Grown in Porous Chitosan Microspheres as Promising Hybrid Materials for
Selective Alcohol Oxidation. Chem.-A Eur. J. 2011, 17, 7940–7946. [CrossRef] [PubMed]
14. Barskiy, D.A.; Kovtunov, K.V.; Primo, A.; Corma, A.; Kaptein, R.; Koptyug, I.V. Selective Hydrogenation
of 1,3-Butadiene and 1-Butyne over a Rh/Chitosan Catalyst Investigated by using Parahydrogen-Induced
Polarization. ChemCatChem 2012, 4, 2031–2035. [CrossRef]
15. Frindy, S.; Lahcini, M.; Primo, A.; Bousmina, M.; Garcia, H.; El Kadib, A. Pd embedded in chitosan
microspheres as tunable soft-materials for Sonogashira cross-coupling in water–ethanol mixture. Green Chem.
16. Primo, A.; Quignard, F. Chitosan as efficient porous support for dispersion of highly active gold nanoparticles:
Design of hybrid catalyst for carbon–carbon bond formation. Chem. Commun. 2010, 46, 5593. [CrossRef]
17. Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F. Functionalized
Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the [3 + 2] Huisgen Cycloaddition.
18. Primo, A.; Liebel, M.; Quignard, F. Palladium Coordination Biopolymer: A Versatile Access to Highly Porous
Dispersed Catalyst for Suzuki Reaction. Chem. Mater. 2009, 21, 621–627. [CrossRef]
19. El Kadib, A. Chitosan as a sustainable organocatalyst: A concise overview. ChemSusChem 2015, 8, 217–244.
20. Bratskaya, S.; Privar, Y.; Nesterov, D.; Modin, E.; Kodess, M.I.; Slobodyuk, A.; Marinin, D.V.; Pestov, A.V.
Chitosan Gels and Cryogels Cross-Linked with Diglycidyl Ethers of Ethylene Glycol and Polyethylene Glycol
in Acidic Media. Biomacromolecules 2019, 20, 1635–1643. [CrossRef]