CONCLUSIONS
2 4
In this study, we have reported the green synthesis of Ni0.35Cu0.25Zn0.4Fe O nanoparticles by the sol-gel method with
tragacanth gel (TG) as a biopolymeric template. A single phase with a cubic spinel structure was formed after heat treatment
at 700 °C for only 4 h. This method has many advantages such as nontoxicity, economic viability, easiness to scale up, less
time consuming and environmentally friendly approach for the synthesis of Ni–Cu–Zn ferrite nanoparticles without using any
organic chemicals. The catalytic activity of Ni–Cu–Zn ferrite nanoparticles has been evaluated for the HBIW synthesis under
ultrasonic irradiation. The catalyst is inexpensive and easily available. Moreover, mild reaction conditions, simple procedure,
short reaction times, easy workup, high yields of products, and easy separation and recyclability of the catalyst are the salient
features of the presented work.
This work is funded by grant NRF-2018R1A2B3001246 of the National Research Foundation of Korea.
REFERENCES
1
2
3
4
. G. Nabiyouni, H. Halakoui, and D. Ghanbari. J. Nanostruct., 2016, 7, 77-81.
. S. Taghavi Fardood, A. Ramazani, and S. Moradi. J. Sol-Gel Sci. Technol., 2017, 82, 432-439.
. K. Hedayati. J. Nanostruct., 2015, 5, 13-16.
. F. Sadri, A. Ramazani, H. Ahankar, S. Taghavi Fardood, P. Azimzadeh Asiabi, M. Khoobi, S. Woo Joo, and
N. Dayyani. J. Nanostruct., 2016, 6, 264-272.
5
6
7
8
9
. A. El-Sayed. Mater. Chem. Phys., 2003, 82, 583-587.
. M. Ahmed, E. Ateia, L. Salah, and A. El-Gamal. Mater. Chem. Phys., 2005, 92, 310-321.
. M. Gabal. J. Magn. Magn. Mater., 2009, 321, 3144-3148.
. R. Arabian, A. Ramazani, B. Mohtat, V. Azizkhani, S. W. Joo, and M. Rouhani. J. Energ. Mater., 2014, 32, 300-305.
. P. Maksimowski, T. Gołofit, and W. Tomaszewski. Cent. Eur. J. Energ. Mater., 2016, 13, 333-348.
1
0. A. T. Nielsen, A. P. Chafin, S. L. Christian, D. W. Moore, M. P. Nadler, R. A. Nissan, D. J. Vanderah, R. D. Gilardi,
C. F. George, and J. L. Flippen-Anderson. Tetrahedron, 1998, 54, 11793-11812.
1. A. J. Bellamy. Tetrahedron, 1995, 51, 4711-4722.
1
1
1
1
1
1
1
1
1
2
2
2. Y. Bayat, H. Ebrahimi, and F. Fotouhi-Far. Org. Process Res. Dev., 2012, 16, 1733-1738.
3. W. Qiu, S. Chen, and Y. Yu. J. Chem. Crystallogr., 1998, 28, 593-596.
4. M. R. Crampton, J. Hamid, R. Millar, and G. Ferguson. J. Chem. Soc., Perkin Trans. 1993, 2(2), 923-929.
5. M. Zohuriaan and F. Shokrolahi. Polym. Test., 2004, 23, 575-579.
6. N. Gralen and M. Kärrholm. J. Colloid Sci., 1950, 5, 21-36.
7. R. Waldron. Phys. Rev., 1955, 99, 1727-1735.
8. K. M. Batoo, S. Kumar, and C. G. Lee. Curr. Appl Phys., 2009, 9, 826-832.
9. J. Jefimczyk, A. Antczak, and P. Maksimowski, Przem. Chem., 2008, 87, 296-299.
0. T. Gołofit, P. Maksimowski, P. Szwarc, T. Cegłowski, and J. Jefimczyk. Org. Process Res. Dev., 2017, 21, 987-991.
1. S. Shokrollahi, A. Ramazani, S. J. Tabatabaei Rezaei, A. Mashhadi Malekzadeh, P. Azimzadeh Asiabi, and S. W. Joo.
Iran. J. Catal., 2016, 6, 65-68.
22. V. Azizkhani, F. Montazeri, E. Molashahi, and A. Ramazani. J. Energ. Mater., 2017, 35, 314-320.
1736