A R T I C L E S
Yoon et al.
Scheme 1. Molecular Structure of DBDCS and Its Local Dipoles
(dashed arrows) and Transition Dipole Moment µ(S0fS1) (double
arrow, the length of 12.6 D) and Dihedral Torsional Angles in
Isolated State and Single Crystal State (in brackets)
nanoparticles and polymer films,12 highly sensitive fluorescence
probes for organic vapors,13 array patterning of fluorescent
nanoparticles,14 fluorescent switchable smart gels,15 and fluo-
rescent switchable π-dimer crystals,9e which respond to various
external stimuli including light, organic vapor, acid, temperature,
and pressure. Meanwhile, some cyano distyrylbenzene (DSB)
derivatives have also been shown to exhibit reversible piezo-
chromism by C. Weder group.8c
Herein, we have synthesized a new AIEE-active cyano DSB
derivative, (2Z,2′Z)-2,2′-(1,4-phenylene)bis(3-(4-butoxyphenyl) acry-
lonitrile), DBDCS (see Scheme 1). DBDCS exhibits very high
solid-state fluorescence quantum yield (62%) due to the charac-
teristic AIEE process, as well as multistimuli two-color lumines-
cence switching. DBDCS uniquely forms fluorescent ‘molecular
sheets’ with stacking and shear-sliding capabilities, which are
responsible for stimuli-responsive luminescence switching behavior.
We have utilized this phenomenon to successfully develop rewrit-
able fluorescent optical recording media which showed fast-
responding multistimuli luminescence switching. This multistimuli
responsive system may find practical applications in optical
memory systems. Furthermore, it offers an intriguing example how
to understand and utilize structure-property relationships in the
solid-state fluorescence emission behavior. To gain further insight
into this phenomenon, we have comprehensively explored the
structural, optical and photophysical properties, assisted by quantum-
chemical calculations.
(5) (a) Davis, R.; Rath, N. P.; Das, S. Chem. Commun. 2004, 74. (b) Mutai,
T.; Satou, H.; Araki, K. Nat. Mater. 2005, 4, 685. (c) Zhang, H.; Zhang,
Z.; Ye, K.; Zhang, J.; Wang, Y. AdV. Mater. 2006, 18, 2369. (d) Mutai,
T.; Tomoda, H.; Ohkawa, T.; Yabe, Y.; Araki, K. Angew. Chem., Int.
Ed. 2008, 47, 9522. (e) Zhao, Y.; Gao, H.; Fan, Y.; Zhou, T.; Su, Z.;
Liu, Y.; Wang, Y. AdV. Mater. 2009, 21, 3165.
2. Experimental and Computational Methods
(6) (a) Davis, R.; Kumar, N. S. S.; Abraham, S.; Suresh, C. H.; Rath,
N. P.; Tamaoki, N.; Das, S. J. Phys. Chem. C 2008, 112, 2137. (b)
Kumar, N. S. S.; Varghese, S.; Rath, N. P.; Das, S. J. Phys. Chem. C
2008, 112, 8429. (c) Thomas, R.; Varghese, S.; Kulkarni, G. U. J.
Mater. Chem. 2009, 19, 4401. (d) Kumar, N. S. S.; Varghese, S.;
Suresh, C. H.; Rath, N. P.; Das, S. J. Phys. Chem. C 2009, 113, 11927.
(e) Zhang, Z.; Zhang, Y.; Yao, D.; Bi, H.; Javed, I.; Fan, Y.; Zhang,
H.; Wang, Y. Cryst. Growth Des. 2009, 9, 5069.
2.1. Synthesis and Characterization. (2Z,2′Z)-2,2′-(1,4-phe-
nylene)bis(3-(4-butoxyphenyl) acrylonitrile), DBDCS (see Scheme
1), was synthesized via Knoevenagel reaction of 4-butoxy-benzal-
dehyde and (4-cyanomethyl-phenyl)-acetonitrile. Full synthetic
1
details, H NMR, 13C NMR, mass spectroscopy, and elemental
analysis characterization are found in the Supporting Information
(SI).
(7) (a) Kishimura, A.; Yamashita, T.; Yamaguchi, K.; Aida, T. Nat. Mater.
2005, 4, 546. (b) Dong, Y.; Lam, J. W. Y.; Qin, A.; Li, Z.; Sun, J.;
Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. Chem. Commun. 2007,
40. (c) Dong, Y.; Lam, J. W. Y.; Qin, A.; Sun, J.; Liu, J.; Li, Z.; Sun,
J.; Sung, H. H. Y.; Williams, I. D.; Kwok, H. S.; Tang, B. Z. Chem.
Commun. 2007, 3255. (d) Srinivasan, S.; Babu, P. A.; Mahesh, S.;
Ajayaghosh, A. J. Am. Chem. Soc. 2009, 131, 15122.
2.2. Sample Preparation. Nanoparticle suspensions were ob-
tained by a simple reprecipitation method from DBDCS solution
in THF (2 × 10-5 mol L-1) by injection of water (distilled and
filtered by membrane filter with 0.2 µm pore size) in 1:4 volume
fraction under vigorous stirring.16 Single crystals were obtained
from the ethyl acetate solution at room temperature. Powder samples
were prepared by recrystallization from hot ethanol solutions as
pale whitish sheet-like crystallites. Thin films (thickness of 50 nm)
were fabricated on quartz substrates by vacuum deposition.
2.3. X-ray and Thermal Analysis. A single crystal was selected
under ambient condition, coated in epoxy, and mounted on the end
of a glass fiber. Crystal data collection was performed on a Bruker
CCD Apex diffractometer with Mo KR (λ ) 0.71073 Å) radiation
and a collector-to-crystal distance of 5.99 cm. Cell constants were
determined from a list of reflections found by an automated search
routine. Data were collected using the full sphere routine and
corrected for Lorentz and polarization effects. The absorption
corrections were based on fitting a function to the empirical
transmission surface as sampled by multiple equivalent measure-
ments using SADABS software. SAXS measurements were per-
formed on a GADDS (Bruker, Germany) equipped with a 2D area
detector, operating at 3 kW. XRD measurements were performed
on a Powder X-ray Diffractometry (Bruker, Germany), operating
at 3 kW. Differential scanning calorimetry (DSC) was performed
(8) (a) Gawinecki, R.; Viscardi, G.; Barni, E.; Hanna, M. A. Dyes Pigments
1993, 23, 73. (b) Sagara, Y.; Mutai, T.; Yoshikawa, I.; Araki, K. J. Am.
Chem. Soc. 2007, 129, 1520. (c) Kunzelman, J.; Kinami, M.;
Crenshaw, B. R.; Protasiewicz, J. D.; Weder, C. AdV. Mater. 2008,
20, 119. (d) Kozhevnikov, V. N.; Donnio, B.; Bruce, D. W. Angew.
Chem., Int. Ed. 2008, 47, 6286. (e) Ito, H.; Saito, T.; Oshima, N.;
Kitamura, N.; Ishizaka, S.; Hinatsu, Y.; Wakeshima, M.; Kato, M.;
Tsuge, K.; Sawamura, M. J. Am. Chem. Soc. 2008, 130, 10044. (f)
Zhang, G.; Lu, J.; Sabat, M.; Fraser, C. L. J. Am. Chem. Soc. 2010,
132, 2160. (g) Tsukuda, T.; Kawase, M.; Dairiki, A.; Matsumoto, K.;
Tsubomura, T. Chem. Commun. 2010, 46, 3255. (h) Zhang, G.; Lu,
J.; Fraser, C. L. Inorg. Chem. 2010, 49, DOI: 10.1021/ic902591s.
(9) (a) Mizukami, S.; Houjou, H.; Sugaya, K.; Koyama, E.; Tokuhisa,
H.; Sasaki, T.; Kanesato, M. Chem. Mater. 2005, 17, 50. (b) Yagai,
S.; Seki, T.; Karatsu, T.; Kitamura, A.; Wu¨rthner, F. Angew. Chem.,
Int. Ed. 2008, 47, 3367. (c) Sagara, Y.; Kato, T. Angew. Chem., Int.
Ed. 2008, 47, 5175. (d) Sagara, Y.; Yamane, S.; Mutai, T.; Araki, K.;
Kato, T. AdV. Funct. Mater. 2009, 19, 1869. (e) Chung, J. W.; You,
Y.; Huh, H. S.; An, B. K.; Yoon, S. J.; Kim, S. H.; Lee, S. W.; Park,
S. Y. J. Am. Chem. Soc. 2009, 131, 8163. (f) Sagara, Y.; Kato, T.
Nat. Chem. 2009, 1, 605.
(10) (a) An, B. K.; Kwon, S. K.; Jung, S. D.; Park, S. Y. J. Am. Chem.
Soc. 2002, 124, 14410. (b) An, B. K.; Lee, D. S.; Lee, J. S.; Park,
Y. S.; Song, H. S.; Park, S. Y. J. Am. Chem. Soc. 2004, 126, 10232.
(c) An, B. K.; Gihm, S. H.; Chung, J. W.; Park, C. R.; Kwon, S. K.;
Park, S. Y. J. Am. Chem. Soc. 2009, 131, 3950.
on a Perkin-Elmer DSC7 at a heating rate of 5 °C min-1
.
1
2.4. Spectroscopic Characterization. H NMR spectra were
recorded on a JEOL JNM-LA300 (300 MHz) in CDCl3 solutions.
Mass spectra were measured using a JEOL, JMS AX505WA mass
spectrometer. Elemental analysis was carried out using a CE
instruments EA1110 elemental analyzer. FE-SEM images were
acquired on a JSM-6330F (JEOL). UV-visible absorption spectra
(11) Oelkrug, D.; Tompert, A.; Gierschner, J.; Egelhaaf, H. J.; Hanack,
M.; Hohloch, M.; Steinhuber, E. J. Phys. Chem. B 1998, 102, 1902.
(12) (a) Lim, S. J.; An, B. K.; Jung, S. D.; Chung, M. A.; Park, S. Y.
Angew. Chem., Int. Ed. 2004, 43, 6346. (b) Lim, S. J.; An, B. K.;
Park, S. Y. Macromolecules 2005, 38, 6236.
(13) An, B. K.; Kwon, S. K.; Park, S. Y. Bull. Korean Chem. Soc. 2005,
26, 1555.
(14) An, B. K.; Kwon, S. K.; Park, S. Y. Angew. Chem., Int. Ed. 2007, 46,
1978.
(16) For general preparation methods of organic nanoparticles, see: (a)
Kasai, H.; Nalwa, H. S.; Okada, S.; Oikawa, H.; Nakanish, H.
Handbook of Nanostructured Materials and Nanotechnology; Aca-
demic Press: New York, 2000; Vol. 5, Chapter 8, 433-473. (b) Horn,
D.; Rieger, J. Angew. Chem., Int. Ed. 2001, 40, 4330.
(15) (a) Chung, J. W.; An, B. K.; Park, S. Y. Chem. Mater. 2008, 20, 6750.
(b) Chung, J. W.; Yoon, S. J.; Lim, S. J.; An, B. K.; Park, S. Y. Angew.
Chem., Int. Ed. 2009, 48, 7030.
9
13676 J. AM. CHEM. SOC. VOL. 132, NO. 39, 2010