S. K. Mandal et al. / Tetrahedron Letters 46 (2005) 6115–6117
6117
unsaturated esters in good yields using titanocene(III)
chloride has been developed.
Beattie, M. S. J. Am. Chem. Soc. 1990, 112, 6408; (c)
Rajanbabu, T. V.; Nugent, W. A. J. Am. Chem. Soc. 1994,
1
16, 986; For a catalytic version see: (d) Gansauer, A.;
Bluhm, H.; Pierobon, M. J. Am. Chem. Soc. 1998, 120,
2849.
. Typical procedure: A solution of titanocene dichloride
249mg, 1 mmol) in dry THF (10 mL) was stirred with
1
Acknowledgements
8
(
S.K.M. and S.J. thank CSIR, New Delhi, for awarding
the fellowships.
activated zinc dust (196 mg, 3 mmol) (activated zinc dust
was prepared by washing 20 g of commercially available
zinc dust with 60 mL of 4 N HCl followed by thorough
washing with water until the washings became neutral and
finally washed with dry acetone and then dried in vacuo) for
References and notes
1
h under argon. The resulting green solution was added
1
2
. (a) Perlmutter, P. Conjugate Addition Reactions in Organic
Synthesis; Pergamon: Oxford, UK, 1992; (b) Leonard, J.;
Diez-Barra, F.; Merino, S. Eur. J. Org. Chem. 1998,
slowly to a stirred solution of the enone 1a (104 mg,
0.5 mmol) and allyl bromide (60 mg, 0.5 mmol) in dry THF
(5 mL) at room temperature over 1.5 h. The reaction
mixture was then stirred for an additional 2.5 h and finally
2
051.
. (a) Jeon, Y. T.; Lee, C.-P.; Mariano, P. S. J. Am. Chem.
Soc. 1991, 113, 8847; (b) Sibi, M. P.; Ji, J.; Sausker, J. B.;
Jasperse, C. P. J. Am. Chem. Soc. 1999, 121, 7517; (c)
Mirakata, M.; Tsutsui, H.; Hoshino, O. Org. Lett. 2001, 3,
decomposed with 10% aqueous H SO solution (5 mL).
2 4
Most of the solvent was removed under reduced pressure
and the residue obtained was extracted with diethyl ether
(4 · 25 mL). The ether layer was successively washed with
water (2 · 10 mL), brine (2 · 10 mL) and finally dried
2
99; (d) Sibi, M. P.; Manyem, S. Org. Lett. 2002, 4, 2929;
(
e) Sibi, M. P.; Liu, P.; Ji, J.; Hajra, S.; Chen, J.-X. J. Org.
2 4
(Na SO ). After removal of the solvent, the crude residue
Chem. 2002, 67, 1738; (f) Srikanth, G. S. C.; Castle, S. L.
Org. Lett. 2004, 6, 449.
obtained was purified by column chromatography over
silica gel (5% ethyl acetate in petroleum ether) to afford 1b
3
. (a) Iserloh, U.; Curran, D. P.; Kanemasa, S. Tetrahedron:
Asymmetry 1999, 10, 2417; (b) Liu, J.-Y.; Jang, Y.-J.; Lin,
W.-W.; Liu, J.-T.; Yao, C.-F. J. Org. Chem. 2003, 68, 4030.
. Spencer, R. P.; Schwartz, J. Tetrahedron 2000, 56, 2103.
. (a) Mandal, P. K.; Maiti, G.; Roy, S. C. J. Org. Chem.
(85 mg, 68%) as a crystalline solid mp 50–51 ꢁC. IR (neat):
À1
2927, 1678, 1639, 1595, 1494, 1448, 1352, 1261, 1215 cm
;
1
3
H NMR (300 MHz, CDCl ): d 2.38 (dd, J = 7.2, 6.9Hz,
4
5
2H), 3.21 (d, J = 6.6 Hz, 2H), 3.35–3.45 (m, 1H), 4.88 (d,
J = 9.9 Hz, 1H), 4.92 (d, J = 16.5 Hz, 1H), 5.54–5.68 (m,
1H), 7.07–7.23 (m, 5H), 7.34 (dd, J = 8.1, 7.5 Hz, 2H), 7.44
1
998, 63, 2829; (b) Roy, S. C.; Rana, K. K.; Guin, C. J.
1
3
Org. Chem. 2002, 67, 3242.
(t, J = 7.5 Hz, 1H), 7.81 (d, J = 8.1 Hz, 2H); C NMR
(75 MHz, CDCl ): d 40.5, 40.6, 44.4, 116.6, 126.2, 127.4,
128.3, 128.4, 128.8, 132.8, 136.1, 137.0, 144.2, 198.8. HRMS
6
7
. Jana, S.; Guin, C.; Roy, S. C. Tetrahedron Lett. 2004, 45,
3
6
575.
. (a) Nugent, W. A.; RajanBabu, T. V. J. Am. Chem. Soc.
988, 110, 8561; (b) RajanBabu, T. V.; Nugent, W. A.;
+
(ESI) calcd for
251.1430.
18 19
C H O (M +H): 251.1436; found
1