Journal of the American Chemical Society
Communication
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
The authors thank the NSF (CHE-1151773 to R.J.H., CHE-
0747481 to R.R.J.) and UC Riverside for funding.
■
Figure 6. Plots of percent complex vs time: (a) [13Y2]6− and [13La2]6−
in samples containing 50 mM water (dry) and 150 mM water (wet); (b)
23Y and 23La in samples containing 100 mM water (dry) and 300 mM
water (wet).
REFERENCES
■
(1) Fujita, M.; Umemoto, K.; Yoshizawa, M.; Fujita, N.; Kusukawa, T.;
Biradha, K. Chem. Commun. 2001, 509.
(2) Fiedler, D.; Bergman, R. G.; Raymond, K. N. Angew. Chem., Int. Ed.
2006, 45, 745.
(3) Brown, C. J.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc.
2009, 131, 17530.
strained ligands to control assembly in transition metal complexes
is precedented,1,13 but it is rarely observed for coordinatively
flexible RE metal complexes. 1 is a departure from the more
typical Ln-coordinating ligands that contain flexible methylene
spacers and show little to no selectivity between metals unless
“built in” by the incorporation of different coordinating motifs.14
Interestingly, the presence of water in the sample has a large
effect on the equilibration process. Water is well-known to
reversibly coordinate to Gd-based MRI contrast agents and is
strongly correlated with their contrast and relaxivity.15 For the
[13La2]6− complexes, increased [H2O] caused faster equilibra-
tion to the thermodynamic product. The data are most striking
for the Y3+/La3+ system: Figure 6 shows the change in proportion
of [13Y2]6− and [13La2]6− vs time, along with the control of
[23Y]3−: [23La]3− in samples containing varying amounts of
water. In the presence of 50 mM water, very slow equilibration of
[13Y2]6− to [13La2]6− occurs and the equilibration is not
complete after multiple days. Additional water ([H2O] = 150
mM) caused a much faster change in the equilibrium, and the
graph is similar to Figure 5a. It should be noted that [H2O] in all
equilibration experiments in Figure 5 and the SI was identical.
As would be expected, monometallic control complex [23Y]3−
showed no effect from the presence of additional water. There
was a slight shift in selectivity upon initial complexation, but no
significant equilibration was observed, lending additional
evidence for cooperativity in equilibration. The favorable,
reversible coordination of water to the Ln centers allows more
rapid on/off exchange between the ligands and speeds up the
equilibration process. In the case of the nonequilibrating ligand 2,
this has essentially no effect but is an important component of the
cooperative selectivity of 1 for different RE metals.
(4) Young, N. J.; Hay, B. P. Chem. Commun. 2013, 49, 1354.
(5) (a) Piguet, C.; Bernardinelli, G.; Hopfgartners, G. Chem. Rev. 1997,
97, 2005. (b) Stomeo, F.; Lincheneau, C.; Leonard, J. P.; O’Brien, J. E.;
Peacock, R. D.; McCoy, C. P.; Gunnlaugsson, T. J. Am. Chem. Soc. 2009,
131, 9636. (c) Shi, J.; Hou, Y.; Chu, W.; Shi, X.; Gu, H.; Wang, B.; Sun,
Z. Inorg. Chem. 2013, 52, 5013. (d) Jensen, T. B.; Scopelliti, R.; Bunzli, J.-
̈
C. G. Chem.Eur. J. 2007, 13, 8404. (e) Piguet, C.; Bunzli, J.-C. G. In
̈
Handbook on the Physics and Chemistry of Rare Earths; Gschneider, K. A.,
Jr., Bunzli, J.-C. G., Pecharsky, V. K., Eds.; Elsevier: Amsterdam, 2010;
̈
Vol. 40, pp 301−553. (f) Albrecht, M.; Osetska, O.; Frolich, R.; Bunzli,
̈
̈
J.-C. G.; Aebischer, A.; Gumy, F.; Hamacek, J. J. Am. Chem. Soc. 2007,
129, 14178. (g) Ryan, P. E.; Guenee, L.; Piguet, C. Dalton Trans. 2013,
42, 11047.
(6) (a) Wang, J.; He, C.; Wu, P.; Wang, J.; Duan, C. J. Am. Chem. Soc.
2011, 133, 12402. (b) El Aroussi, B.; Guenee, L.; Pal, P.; Hamacek, J.
Inorg. Chem. 2011, 50, 8588.
(7) (a) Chen, X.-Y.; Bretonnier
́
́
́
́
̀
́
e, Y.; Pecaut, J.; Imbert, D.; Bunzli, J.-
̈
C.; Mazzanti, M. Inorg. Chem. 2007, 46, 625. (b) El Aroussi, B.; Zebret,
S.; Besnard, C.; Perrottet, P.; Hamacek, J. J. Am. Chem. Soc. 2011, 133,
10764.
(8) (a) Gorden, A. E. V.; DeVore, M. A., II; Maynard, B. A. Inorg. Chem.
2013, 52, 3445. (b) Lewis, F. W.; Hudson, M. J.; Harwood, L. M. Synlett
2011, 18, 2609. (c) Paiva, A. P.; Malik, P. J. Radioanal. Nucl. Chem. 2004,
261, 485. (d) Panak, P. J.; Geist, A. Chem. Rev. 2013, 113, 1199.
(9) Johnson, A. M.; Young, M. C.; Hooley, R. J. Dalton Trans. 2013, 42,
8394.
(10) CRC Handbook of Chemistry and Physics, 87th ed.; Lide, D. R., Ed.;
CRC Press: Boca Raton, FL, 2006; Sect. 4, p 132.
(11) Piguet, C.; Bunzli, J.-C. G.; Bernardinelli, G.; Hopfgartner, G.;
̈
Williams, A. F. J. Am. Chem. Soc. 1993, 115, 8197.
(12) (a) Petoud, S.; Bunzli, J.-C. G.; Renaud, F.; Piguet, C.; Schenk, K.
̈
J.; Hopfgartner, G. Inorg. Chem. 1997, 36, 5750. (b) Le Borgne, T.;
́
Benech, J.-M.; Floquet, S.; Bernardinelli, G.; Aliprandini, C.; Bettens, P.;
Piguet, C. Dalton Trans. 2003, 3856.
(13) (a) Young, M. C.; Johnson, A. M.; Gamboa, A. S.; Hooley, R. J.
Chem. Commun. 2013, 49, 1627. (b) Ousaka, N.; Grunder, S.; Castilla, A.
M.; Whalley, A. C.; Stoddart, J. F.; Nitschke, J. R. J. Am. Chem. Soc. 2012,
134, 11528.
In conclusion, we have shown that self-assembled M2L3
complexes can discriminate among lanthanide ions with a kinetic
preference for smaller metals and a thermodynamic preference
for larger metals. Selectivity is obtained despite small differences
in Ln ion size and identical coordination environment of the
ligand, and a correlation is observed between distribution of
complex and difference in ionic radius. Cooperative effects are
observed in the bis-tridentate ligand, and the presence of two
coordination sites assists in equilibration to the larger complex.
Further studies of lanthanide- and actinide-based self-assembly
are underway in our laboratory.
(14) (a) Sorgho-Aboshyan, L.; Nozary, H.; Aebischer, A.; Bunzli, J.-C.
̈
G.; Morgantini, P.-Y.; Kittilstved, K. R. J. Am. Chem. Soc. 2012, 134,
12675. (b) Albrecht, M.; Osetska, O.; Bunzli, J.-C. G.; Gumy, F.;
̈
Frohlich, R. Chem.Eur. J. 2009, 15, 8791. (c) Zeckert, K.; Hamacek, J.;
̈
Rivera, J.-P.; Floquet, S.; Pinto, A.; Borkovec, M.; Piguet, C. J. Am. Chem.
Soc. 2004, 126, 11589. (d) Riis-Johannessen, T.; Bernardinelli, G.;
Filinchuk, Y.; Clifford, S.; Favera, N. D.; Piguet, C. Inorg. Chem. 2009,
48, 5512.
(15) Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. Rev.
1999, 99, 2293.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and characterization data. This material is
■
S
17726
dx.doi.org/10.1021/ja409882k | J. Am. Chem. Soc. 2013, 135, 17723−17726