Journal of the American Chemical Society
Page 4 of 6
(8) Selected examples of [2+2+1] pyrrole formation: (a) Matsui, K.;
Shibuya, M.; Yamamoto, Y. Synthesis of Pyrroles via Ruthenium-cat-
alyzed Nitrogen-transfer [2+2+1] Cycloaddition of α,ω-Diynes Using
Sulfoximines as Nitrene Surrogates. Comms. Chem. 2018, 1, 21. (b)
Chong, Q.; Xin, X.; Wang, C.; Wu, F.; Wan, B. Synthesis of Polysub-
stituted Pyrroles via Ag(I)-mediated Conjugate Addition and Cycliza-
tion Reaction of Terminal Alkynes with Amines. Tetrahedron 2014, 70,
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
ASSOCIATED CONTENT
Supporting Information
NMR characterization of complex 7 and the coupling products; full
experimental details regarding the kinetic study; and the .CIF file
for complex 7 are included in the Supporting Information. The
Supporting Information (PDF and CIF) is available free of charge
on the ACS Publications website.
4
2
90. (c) Zhang, L.; Wang, X.; Li, S.; Wu, J. Synthesis of Pyrrole-
,3,4,5-tetracarboxylates via a Copper-catalyzed Reaction of Amine
with But-2-ynedioate. Tetrahedron 2013, 69, 3805. (d) Chen, X.; Li,
X.; Wang, N.; Jin, J.; Lu, P.; Wang, Y. Palladium-Catalyzed Reaction
of Arylamine and Diarylacetylene: Solvent-Controlled Construction of
AUTHOR INFORMATION
Corresponding Author
2
,3-Diarylindoles and Pentaarylpyrroles. Eur. J. Org. Chem. 2012,
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
4380. (e) Chen, X.; Jin, J.; Wang, Y.; Lu, P. Palladium-Catalyzed Syn-
thesis of 7,9-Diaryl-8ꢀH-acenaphtho[1,2-c]pyrroles and Their Applica-
tion in Explosives Detection. Chem. - Eur. J. 2011, 17, 9920. (f) Wu,
T.-C.; Tai, C.-C.; Tiao, H.-C.; Kuo, M.-Y.; Wu, Y.-T. Nickel-Cata-
lyzed, Cascade Cycloadditions of 1-Ethynyl-8-halonaphthalenes with
Nitriles: Synthesis, Structure, and Physical Properties of New Pyr-
roloarenes. Chem. - Eur. J. 2011, 17, 1930. (g) Liu, W.; Jiang, H.;
Huang, L. One-Pot Silver-Catalyzed and PIDA-Mediated Sequential
Reactions: Synthesis of Polysubstituted Pyrroles Directly from Al-
kynoates and Amines. Org. Lett. 2010, 12, 312. (h) Yamamoto, Y.;
Kinpara, K.; Saigoku, T.; Takagishi, H.; Okuda, S.; Nishiyama, H.; Itoh,
K. Cp*RuCl-Catalyzed [2+2+2] Cycloadditions of α,ω-Diynes with
Electron-Deficient Carbon−Heteroatom Multiple Bonds Leading to
Heterocycles. J. Am. Chem. Soc. 2005, 127, 605.
*
*
*
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
We thank Mr. Hibiki Ochi for the initial experiment results. K.K.
thanks the financial support by the JSPS Research Fellow-ships for
Young Scientist. H.T. acknowledged the financial support by JSPS
KAKENHI grant No.15KK0185, a Fund for the Promotion of Joint
International Research (Fostering Joint International Research),
and Multidisciplinary Research Laboratory System of Graduate
School of Engineering Science, Osaka University. K.M. acknowl-
edged financial supports by JSPS KAKENHI Grant Numbers
(
9) (a) Chiu, H.-C., See, X. Y.; Tonks, I. A. Dative Directing Group Effects
in Ti-Catalyzed [2+2+1] Pyrrole Synthesis: Chemo- and Regioselec-
tive Alkyne Heterocoupling. ACS Catal. 2019, 9, 216. (b) Davis-Gil-
bert, Z. W.; Kawakita, K.; Blechschmidt, D. R.; Tsurugi, H.; Mashima,
K.; Tonks, I. A. In Situ Catalyst Generation and Benchtop-Compatible
1
5H05808, 15K21707 in Precisely Designed Catalysts with Cus-
II
IV
Entry Points for Ti /Ti Redox Catalytic Reactions. Organometallics
018, 37, 4439. (c) Chiu, H.-C., Tonks, I. A. Trimethylsilyl-Protected
tomized Scaffolding (No. 2702). Financial support was provided
by the National Institutes of Health (1R35GM119457), and the Al-
fred P. Sloan Foundation (I.A.T. is a 2017 Sloan Fellow). Equip-
ment for the UMN Chemistry Department NMR facility was sup-
ported through a grant from the National Institutes of Health
2
Alkynes as Selective Cross-Coupling Partners in Titanium-Catalyzed
[2+2+1] Pyrrole Synthesis. Angew. Chem., Int. Ed. 2018, 57, 6090. (d)
Davis-Gilbert, Z. W.; Wen, X.; Goodpaster, J. D.; Tonks, I. A. Mecha-
nism of Ti-Catalyzed Oxidative Nitrene Transfer in [2+2+1] Pyrrole
Synthesis from Alkynes and Azobenzene. J. Am. Chem. Soc. 2018, 140,
7267. (e) Guo, J.; Deng, X.; Song, C.; Lu, Y.; Qu, S.; Dang, Y.; Wang,
Z.-X. Differences between the Elimination of Early and Late Transition
Metals: DFT Mechanistic Insights into the Titanium-catalyzed Synthe-
sis of Pyrroles from Alkynes and Diazenes. Chem. Sci. 2017, 8, 2413.
(f) Davis-Gilbert, Z. W.; Hue, R. J.; Tonks, I. A. Catalytic Formal
(S10OD011952) with matching funds from the University of Min-
nesota.
REFERENCES
(
1) (a) Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. Pyr-
role: A Resourceful Small Molecule in Key Medicinal Hetero-aromat-
ics. RSC Adv. 2015, 5, 15233. (b) Baumann, M.; Baxendale, I. R.; Ley,
S. V.; Nikbin, N. An Overview of the Key Routes to the Best Selling
II
IV
[
2+2+1] Synthesis of Pyrroles from Alkynes and Diazenes via Ti /Ti
Redox Catalysis. Nat. Chem. 2016, 8, 63.
(
10)Beaumier, E. P.; Pearce, A. J.; See, X. Y.; Tonks, I. A. Modern Appli-
cations of Low-valent Early Transition Metals in Synthesis and Catal-
ysis. Nat. Rev. Chem. 2019, 3, 15-34.
11)Selected examples of using N,N-bis(trimethylsilyl)aniline derivatives
as an imido source: (a) Benito, J. M.; de Jesús, E.; de la Mata, F. J.;
Flores, J. C.; Gómez, R.; Gómez-Sal, P. Carbosilane Dendrimers Con-
taining Peripheral Cyclopentadienyl Niobium- and Tantalum-imido
Complexes. J. Organomet. Chem. 2006, 691, 3602. (b) Antiñolo, A.;
Dorado, I.; Fajardo, M.; Garcés, A.; Kubicki, M. M.; López-Mar-
domingo, C.; Otero, A.; Prashar, S. Synthesis and Reactivity of New
5
-Membered Ring Heterocyclic Pharmaceuticals. Beilstein J. Org.
Chem. 2011, 7, 442.
(
(2) Walsh, C. T.; Garneau-Tsodikova, S.; Howard-Jones, A. R. Biological
Formation of Pyrroles: Nature’s Logic and Enzymatic Machinery. Nat.
Prod. Rep. 2006, 23, 517.
(3) Novák, P.; Müller, K.; Santhanam, K. S. V.; Haas, O. Electrochemi-
cally Active Polymers for Rechargeable Batteries. Chem. Rev. 1997,
9
7, 207.
(4) Loudelt, A.; Burgess, K. BODIPY Dyes and Their Derivatives: Syn-
Mono- and Dinuclear Niobium and Tantalum Imido Complexes: X-ray
theses and Spectroscopic Properties. Chem. Rev. 2007, 107, 4891.
5
Crystal
N(SiMe
Structure
of
[Ta( -C
5 4
H
SiMe
3
)Cl
2
{=NC
6
Me
4
-4-
(5) (a) Knorr, L. Synthese von Furfuranderivaten aus dem Diacetbern-
steinsäureester. Ber. 1884, 17, 2863. (b) Paal, C. Ueber die Derivate
des Acetophenonacetessigesters und des Acetonylacetessigesters. Ber.
(
)
3 2
)}]. J. Organomet. Chem. 2006, 691, 1361. (c) Pennington,
D. A.; Horton, P. N.; Hursthouse, M. B.; Bochmann, M.; Lancaster, S.
J. Synthesis and Catalytic Activity of Dinuclear Imido Titanium Com-
plexes: the Molecular Structure of [Ti(NPh)Cl(-Cl)(THF) ] . Polyhe-
2 2
dron 2005, 24, 151. (d) Antiñolo, A.; Dorado, I.; Fajardo, M.; Garcés,
A.; López-Solera, I.; López-Mardomingo, C.; Kubicki, M. M.; Otero,
A.; Prashar, S. Synthesis, Structural Characterisation and Reactivity of
1
884, 17, 2756.
(6) Hantsch, A. Neue Bildungsweise von Pyrrolderivaten. Ber. 1890, 23,
1474.
(
7) Representative reviews for multicomponent pyrrole formation: (a)
Estévez, V.; Villacampa, M.; Menéndez, J. C. Recent Advances in the
Synthesis of Pyrroles by Multicomponent Reactions. Chem. Soc. Rev.
2014, 43, 4633. (b) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.;
Gevorgyan, V. Transition Metal-Mediated Synthesis of Monocyclic
Aromatic Heterocycles. Chem. Rev. 2013, 113, 3084. (c) Estévez, V.;
Villacampa, M.; Menéndez, J. C. Multicomponent Reactions for the
Synthesis of Pyrroles. Chem. Soc. Rev. 2010, 39, 4402.
New Dinuclear Monocyclopentadienyl Imidoniobium and -tantalum
5
Complexes − X-ray Crystal Structures of [{Nb( -C
5
H
4
SiMe
N)] and [{Ta( -
N)]. Eur. J. Inorg. Chem. 2004,
3 2 2
)Cl } (-
5
5
1,4-NC6H4N)], [{Ta( -C
5
Me
5
)Cl
H
}
2 2
6 4
(-1,4-NC H
C
5
Me )(CH SiMe (-1,4-NC
5
2
3
)
2
}
2
6
4
1299. (e) Antiñolo, A.; Dorado, I.; Fajardo, M.; Garcés, A.; Kubicki,
M. M.; López-Mardomingo, C.; Otero, A. Synthesis and Structural
4
ACS Paragon Plus Environment