Angewandte Chemie International Edition
10.1002/anie.202108698
RESEARCH ARTICLE
[9] F. Trotta, F. Caldera, C. Dianzani, M. Argenziano, G. Barrera, R.
Cavalli, ChemPlusChem, 2016, 81, 439–443.
10] K. Cai, J. Yen, Q. Yin, Y. Liu, Z. Song, S. Lezmi, Y. Zhang, X.
Yang, W. G. Helferich, J. Cheng, Biomater. Sci., 2015, 3, 1061–
065.
11] Y. Zhang, Q. Yin, L. Yin, L. Ma, L. Tang, J. Cheng, Angew.
Chem. Int. Ed., 2013, 52, 6435–6439.
[12] Q. Zhang, Y. X. Deng, C. Y. Shi, B. L. Feringa, H. Tian, D. H.
Qu, Matter, 2021, 4, 1352–1364.
Conclusion
[
We have presented a responsive polymer consisting of a
self-immolative backbone decorated with catechol units. Through
catecholato-Al3+ cross-links, the polymers form dual-responsive
hydrogels in a pH-responsive fashion. Gel degradation and
concomitant release of trapped cargo are triggered either by
lowering pH and cleaving the cross-links, or by translation of a
molecular signal, dithiothreitol, to a macroscopic response by
virtue of depolymerization of the self-immolative backbone. As
such, the two functionalities represent two orthogonal pathways
to hydrogel degradation, working in different time regimes. Both
processes result in vanishing gels and release of small molecule
cargo. Thus, molecular signals are amplified to a macroscopic
1
[
[13] Y. Xiao, X. Tan, Z. Li, K. Zhang, J. Mater. Chem. B, 2020, 8,
6697–6709; Q. E. A. Sirianni, A. Rabiee Kenaree, E. R. Gillies,
Macromolecules, 2018, 52, 262–270; A. P. Esser-Kahn, N. R.
Sottos, S. R. White, J. S. Moore, J. Am. Chem. Soc., 2010, 132,
10266–10268.
[
1
[
2
14] S. Gnaim, D. Shabat, J. Am. Chem. Soc., 2017, 139, 10002–
0008.
15] G. G. Lewis, J. S. Robbins, S. T. Phillips, Chem. Commun.,
014, 50, 5352–5354; G. G. Lewis, J. S. Robbins, S. T. Phillips,
responsive, with the option of leaving only small molecules behind. Macromolecules, 2013, 46, 5177–5183.
[
2
[
16] H. Kim, H. Mohapatra, S. T. Phillips, Angew. Chem. Int. Ed.,
015, 54, 13063–13067.
17] M. S. Baker, H. Kim, M. G. Olah, G. G. Lewis, S. T. Phillips,
Controlling material response in different environments is useful
for storing and releasing small molecules, which we illustrated by
release of rhodamine 6 G. This work on highly functionalized,
degradable polymers expands the scope of self-immolative
polymers, and presents a material capable of releasing small
molecules on demand, with the option of concomitant
transformation from a polymeric structure into small molecules.
Thus, we show that functionalization of self-immolative polymer
backbones result in versatile and stimuli-responsive polymeric
materials.
Green Chem., 2015, 17, 4541–4545.
[18] C. Ergene, E. F. Palermo, J. Mater. Chem. B, 2018, 6, 7217–
7229.
[19] E. M. Lloyd, H. Lopez Hernandez, E. C. Feinberg, M.
Yourdkhani, E. K. Zen, E. B. Mejia, N. R. Sottos, J. S. Moore, S. R.
White, Chem. Mater., 2018, 31, 398–406.
[
20] B. Fan, R. Salazar, E. R. Gillies, Macromol. Rapid. Commun.,
2018, 39, e1800173.
21] S. Pal, A. Sommerfeldt, M. B. Davidsen, M. Hinge, S. U.
Pedersen, K. Daasbjerg, Macromolecules, 2020, 53, 4685–4691.
22] A. P. Bapat, B. S. Sumerlin, A. Sutti, Mater. Horiz., 2020, 7,
94–714; R. Guo, Q. Su, J. Zhang, A. Dong, C. Lin, J. Zhang,
Biomacromolecules, 2017, 18, 1356–1364.
23] Y. Xu, Y. Li, Q. Chen, L. Fu, L. Tao, Y. Wei, Int. J. Mol. Sci.,
018, 19, 2198.
24] Z. Wei, J. H. Yang, X. J. Du, F. Xu, M. Zrinyi, Y. Osada, F. Li,
Y. M. Chen, Macromol. Rapid Commun., 2013, 34, 1464–1470.
25] Q. An, I. D. Wessely, Y. Matt, Z. Hassan, S. Bräse, M.
[
[
6
[
2
[
Acknowledgements
Funding from the Independent Research Fund Denmark (grant no.
[
9041-00096B) and Aarhus University is gratefully acknowledged.
Tsotsalas, Polym. Chem., 2019, 10, 672–678; M. M. Perera, N.
Ayres, Polym. Chem., 2020, 11, 1410–1423.
Affiliation with the Center for Integrated Materials Research
iMAT) at Aarhus University is gratefully acknowledged.
[26] J. C. Lai, L. Li, D. P. Wang, M. H. Zhang, S. R. Mo, X. Wang, K.
Y. Zeng, C. H. Li, Q. Jiang, X. Z. You, J. L. Zuo, Nat. Commun.,
(
2
018, 9, 2725; Y. F. Lei, W. Y. Huang, Q. P. Huang, A. Q. Zhang,
New J. Chem., 2019, 43, 261–268.
27] N. Holten-Andersen, M. J. Harrington, H. Birkedal, B. P. Lee, P.
B. Messersmith, K. Y. Lee, J. H. Waite, Proc. Natl. Acad. Sci. USA,
011, 108, 2651–2655.
28] G. Liu, Q. Yuan, G. Hollett, W. Zhao, Y. Kang, J. Wu, Polym.
Affiliation with the Smart Polymer Materials and Nano-
Composites (SPOMAN) Open Science Initiative is gratefully
acknowledged.
[
2
[
Chem., 2018, 9, 3436–3449.
[29] A. Andersen, Y. Chen, H. Birkedal, Biomimetics, 2019, 4, 30–
Keywords: Self-immolative • Stimuli Responsive • Catechol •
4
[
9.
Polymers • Hydrogel
30] J. Saiz-Poseu, J. Mancebo-Aracil, F. Nador, F. Busque, D.
Ruiz-Molina, Angew. Chem. Int. Ed., 2019, 58, 696–714; J. Zhou,
Z. Lin, Y. Ju, M. A. Rahim, J. J. Richardson, F. Caruso, Acc. Chem.
Res., 2020, 53, 1269–1278; J. Yang, M. A. Cohen Stuart, M.
Kamperman, Chem. Soc. Rev., 2014, 43, 8271–8298.
[
1] Q. V. Nguyen, D. P. Huynh, J. H. Park, D. S. Lee, Eur. Polym. J.,
015, 72, 602–619.
2] Q. Shi, H. Liu, D. D. Tang, Y. H. Li, X. J. Li, F. Xu, NPG Asia
Mater., 2019, 11.
3] D. Zhang, B. Ren, Y. Zhang, L. Xu, Q. Huang, Y. He, X. Li, J.
Wu, J. Yang, Q. Chen, Y. Chang, J. Zheng, J. Mater. Chem. B,
020, 8, 3171–3191; S. Xia, Q. Zhang, S. X. Song, L. J. Duan, G.
H. Gao, Chem. Mater., 2019, 31, 9522–9531.
4] Q. Zhang, C. Y. Shi, D. H. Qu, Y. T. Long, B. L. Feringa, H. Tian,
Sci. Adv., 2018, 4, eaat8192.
5] A. Andersen, M. Krogsgaard, H. Birkedal, Biomacromolecules,
018, 19, 1402–1409; M. Krogsgaard, M. A. Behrens, J. S.
Pedersen, H. Birkedal, Biomacromolecules, 2013, 14, 297–301.
6] M. Krogsgaard, M. R. Hansen, H. Birkedal, J. Mater. Chem. B,
014, 2, 8292–8297.
7] D. Lu, M. Zhu, S. Wu, Q. Lian, W. Wang, D. Adlam, J. A.
Hoyland, B. R. Saunders, Adv. Funct. Mater., 2020, 30, 1–11.
8] Y. Chen, W. Wang, D. Wu, H. Zeng, D. G. Hall, R. Narain, ACS
Appl. Mater. Interfaces, 2019, 11, 44742–44750.
2
[
[31] Y. Chen, Z. Tan, W. Wang, Y. Y. Peng, R. Narain,
[
Biomacromolecules, 2019, 20, 1028–1035; A. R. Narkar, B. Barker,
M. Clisch, J. Jiang, B. P. Lee, Chem. Mater., 2016, 28, 5432–5439;
Y. J. Kan, E. W. Danner, J. N. Israelachvili, Y. F. Chen, J. H. Waite,
Plos One, 2014, 9, e108869.
2
[
[
32] M. Krogsgaard, V. Nue, H. Birkedal, Chem. Eur. J., 2016, 22,
44–857; M. Krogsgaard, A. Andersen, H. Birkedal, Chem.
Commun., 2014, 50, 13278–13281.
33] H. Lee, N. F. Scherer, P. B. Messersmith, Proc. Natl. Acad. Sci.
USA, 2006, 103, 12999–13003.
34] A. H. Agergaard, S. U. Pedersen, H. Birkedal, K. Daasbjerg,
Polym. Chem., 2020, 11, 5572–5577.
35] P. Kord Forooshani, B. P. Lee, J. Polym. Sci. A Polym. Chem.,
017, 55, 9–33; S. Moulay, Polym. Rev., 2014, 54, 436–513.
36] Y. Li, J. Wen, M. Qin, Y. Cao, H. Ma, W. Wang, ACS Biomater.
Sci. Eng., 2017, 3, 979–989; Z. Xu, Sci. Rep., 2013, 3, 1–7.
8
[
2
[
[
2
[
[
[
2
[
[
6
This article is protected by copyright. All rights reserved.