1
50
Z.D. Petrovi ´c et al. / Journal of Molecular Catalysis A: Chemical 356 (2012) 144–151
In 15-TS the Pd H and Pd I bonds are being cleaved, and the
new H I bond is being formed. It is worth pointing out that the
electronic pair from the Pd H bond remains on Pd, implying that
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.molcata.2012.01.007.
Pd(II) is reduced to Pd(0). In this way, the catalytically active
−
[
DEA–Pd(0)–Cl] complex is recovered. The liberated HI is captured
by DEA, yielding the salt [DEAH][I].
References
The Pd(0) complex undergoes oxidative addition [34], and
further reaction with b (as it has a terminal double bond), con-
forming the same mechanism as other 1,1-disubstituted alkenes,
and yielding c (Fig. 1). Mechanistic pathways for migratory inser-
tion, -hydride elimination, and reductive elimination with b as a
substrate are examined, and presented in Supplementary Data.
The results of the IRC calculations for transition states 4-TS, 8-TS,
and 12-TS are presented in Fig. 5.
[1] R. Heck., Acc. Chem. Res. 12 (1979) 146–151.
[2] D.A. Alonso, C. Nájera, M.C. Pácheco, Org. Lett. 2 (2000) 1823–1826.
[
[
3] I.P. Beletskaya, A.V. Cheprakov, Chem. Rev. 100 (2000) 3009–3066.
4] C.S. Consorti, M.L. Zanini, S. Leal, G. Ebeling, J. Dupont, Org. Lett. 5 (2003)
983–986.
[5] C.M. Jin, B. Twamley, J.M. Shreeve, Organometallics 24 (2005) 3020–3023.
[6] R. Wang, B. Twamley, J.M. Shreeve, J. Org. Chem. 71 (2006) 426–429.
[7] X. Cui, J. Li, Z.P. Zhang, Y. Fu, L. Liu, Q.X. Guo, J. Org. Chem. 72 (2007) 9342–9345.
[8] J.G. De Vries, Can. J. Chem. 79 (2001) 1086–1092.
This paper examines migratory insertion, -hydride and reduc-
tive elimination in the Heck reaction of methyl methacrylate and
some aryl halides. Taking into account our results on the preacti-
vation reaction [30–32], and oxidative addition [34], now we are
able to present the full catalytic cycle for the reaction performed
with PdCl2 and methyl methacrylate in DEA (Scheme 3). Table 2
provides the energetics of the catalytic cycle.
The preactivation step is pronouncedly endothermic, and
requires the highest activation energy in the overall Heck reac-
tion. As for the catalytic cycle, oxidative addition and migratory
insertion are exothermic, whereas -hydride elimination, ligand
substitution, and reductive elimination (catalyst recovery) are
endothermic. The overall catalytic cycle is slightly exothermic, and
the highest activation barrier is needed for the reductive elimina-
tion step.
[9] B.M. Trost, in: Atta-Ur-Rahman (Ed.), Advances in Natural Product Chemistry,
Harwood Academic Publishers, Harwood, 1992, p. 194.
10] B.M. Trost, M.L. Crawley, Chem. Rev. 103 (2003) 2921–2943.
11] M. Ahlquist, P.-O. Norrby, Organometallics 26 (2007) 550–553.
[
[
[12] Z. Li, Y. Fu, Q.X. Guo, L. Liu, Organometallics 27 (2008) 4043–4049.
[
[
13] Y.L. Huang, C.M. Weng, F.E. Hong, Chem. Eng. J. 14 (2008) 4426–4434.
14] M. Ahlquist, P. Fristup, D. Tanner, P.-O. Norrby, Organometallics 25 (2006)
2066–2073.
[15] L.J. Goossen, D. Koley, H. Hermann, W. Thiel, Chem. Commun. (2004)
141–2143.
2
[
[
16] R.J. Deeth, A. Smith, M.J. Brown, J. Am. Chem. Soc. 126 (2004) 7144–7151.
17] H.M. Senn, T. Ziegler, Organometallics 23 (2004) 2980–2988.
[18] P. Surawatanawong, Y. Fan, M.B. Hall, J. Organomet. Chem. 693 (2008)
1552–1563.
[
19] L.J. Goossen, D. Koley, H. Hermann, W. Thiel, Organometallics 24 (2005)
398–2410.
2
[20] O. Esposito, M.P.G. Pedro, K.A. Lewis, F.S. Caddick, G.N. Cloke, P.B. Hitchcock,
Organometallics 27 (2008) 6411–6418.
21] M.T. Lee, M.H. Lee, H.C. Hu., Organometallics 26 (2007) 1317–1324.
[
[
22] J.C. Green, B.J. Herbert, J.R. Lonsdale, J. Organomet. Chem. 690 (2005)
6
054–6067.
23] A.J. Carmichael, M.J. Earle, J.D. Holbrey, P.B. McCormac, K.R. Seddon, Org. Lett.
(1999) 997–1000.
24] C. Ye, J.C. Xiao, B. Twamley, A.D. LaLonde, M.G. Norton, J.M. Shreeve, Eur. J. Org.
Chem. (2007) 5095–5100.
[
[
4
. Conclusion
1
Catalytic systems trans-[PdCl (DEA) ]/DEA and trans-
2
2
[
[
25] L. Wang, H. Li, P. Li, Tetrahedron 65 (2009) 364–368.
26] L. Xu, W. Chen, J. Xiao, Organometallics 19 (2000) 1123–1127.
[
PdCl (DEA) ]/[DEA][HAc], used in the reaction of methyl
2 2
methacrylate with aryl halides, provide sustainable homogeneous
catalysis, good regioselectivity and excellent stereoselectivity.
In all cases the only stereoisomer of the internal olefin methyl
[27] I. Pryjomska-Ray, A.M. Trzeciak, J.J. Ziółkowski, J. Mol. Catal. A: Chem. 257
(2006) 3–8.
[
28] S.T. Henriksen, P.-O. Norrby, P. Kaukoranta, P.G. Andersson, J. Am. Chem. Soc.
30 (2008) 10414–10421.
29] P. Surawatanawong, M.B. Hall, Organometallics 27 (2008) 6222–6232.
1
3
-phenyl-2-methylpropenoate is the E-isomer, whereas the only
stereoisomer of the double arylated reaction product methyl
-benzyl-3-phenylpropenoate is the Z-isomer. Our DFT study is
[
[30] Z.D. Petrovi c´ , S. Markovi c´ , D. Simijonovi c´ , V.P. Petrovi c´ , Monatsh. Chem. 140
(
2009) 371–374.
2
[
31] S. Markovi c´ , Z.D. Petrovi c´ , V.P. Petrovi c´ , Monatsh. Chem. 140 (2009) 171–175.
[
32] V.P. Petrovi c´ , S. Markovi c´ , Z.D. Petrovi c´ , Monatsh. Chem. 142 (2011) 141–144.
in agreement with this experimental finding. Namely, possible
isomerization of 5 to an intermediate whose transformation
would lead to Z-methyl 3-phenyl-2-methylpropenoate would be
hindered by the presence of the methyl group. There is similar
steric hindrance that prevents the formation of E-methyl 2-benzyl-
[33] X. Cui, Z. Li, Z.C. Tao, Y. Xu, J. Li, L. Liu, Q.X. Guo, Org. Lett. 8 (2006) 2467–2470.
[
[
[
[
34] Z.D. Petrovi c´ , V.P. Petrovi c´ , D. Simijonovi c´ , S. Markovi c´ , J. Organomet. Chem.
694 (2009) 3852–3858.
35] R.J. Deeth, A. Smith, K.K.M. Hii, J.M. Brown, Tetrahedron Lett. 39 (1998)
3229–3232.
36] I. Ambrogio, G. Fabrizi, S. Cacchi, S.T. Henriksen, P. Fristrup, D. Tanner, P.-O.
Norrby, Organometallics 27 (2008) 3187–3195.
3
-phenylpropenoate (possible isomerization to an appropriate
intermediate would be hindered by the presence of the benzyl
group). In both cases the geometries of these intermediates,
suitable for -hydride elimination, would be extremely strained.
Our experiments show that, in all examined cases, the internal
olefin a is the major product of the regioselective reaction. This
finding is in agreement with our DFT investigation. Namely, the
activation barriers for the formation of a and b are relatively low
and mutually very similar, and their influence to the products dis-
tribution is poor. On the other hand, a is thermodynamically more
stable than b, and thus, a is the preferred reaction product.
Our anionic Heck protocol allows efficient separation of the cat-
alyst and reaction products from the reaction mixture (via simple
extraction and decantation), in contrast to many other homoge-
neous catalyses, where it is a significant problem.
37] C. Backtorp, P.-O. Norrby, Dalton Trans. 40 (2011) 11308–11314.
[38] W. Cabri, I. Candiani, Acc. Chem. Res. 28 (1995) 2–7.
[
[
[
39] E.G. Samsel, J.R. Norton, J. Am. Chem. Soc. 106 (1984) 5505–5512.
40] K.J. Cavell, Coord. Chem. Rev. 155 (1996) 209–243.
41] D.L. Thorn, R. Hoffmann, J. Am. Chem. Soc. 100 (1978) 2079–2090.
[42] B.L. Lin, L. Liu, Y. Fu, S.W. Luo, Q. Chen, Q.X. Guo, Organometallics 23 (2004)
2114–2123.
[43] W. Cabri, I. Candiani, A. Bedeschi, S. Penco, J. Org. Chem. 57 (1992) 1481–1486.
[44] K. Albert, P. Gisdakis, N. Rꢀsch, Organometallics 17 (1998) 1608–1616.
[45] A. Sundermann, O. Uzan, J.M.L. Martin, Chem. Eng. J. 7 (2001) 1703–1711.
[46] Z.D. Petrovi c´ , D. Simijonovi c´ , V.P. Petrovi c´ , S. Markovi c´ , J. Mol. Catal. A: Chem.
327 (2010) 45–50.
[
[
47] A.F. Littke, G.C. Fu, J. Am. Chem. Soc. 123 (2001) 6989–7000.
48] T.R. Hoye, M.J. Kurth, J. Org. Chem. 45 (1980) 3549–3554.
[49] M.J. Frisch, W.G. Trucks, B.H. Schlegel, E.G. Scuseria, A.M. Robb, R.J. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, A.G. Petersson, H. Nakatsuji, M. Caricato,
X. Li, P.H. Hratchian, F.A. Izmaylov, J. Bloino, G. Zheng, L.J. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, T. Vreven, A.J. Montgomery Jr., A.J. Montgomery Jr., E.J. Peralta,
F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, N.K. Kudin, N.V. Staroverov, R.
Kobayashi, J. Normand, K. Raghavachari, A. Rendell, C.J. Burant, S.S. Iyengar, J.
Tomasi, M. Cossi, N. Rega, M.J. Millam, M. Klene, E.J. Knox, B.J. Cross, V. Bakken,
C. Adamo, J. Jaramillo, R. Gomperts, E.R. Stratmann, O. Yazyev, J.A. Austin, R.
Cammi, C. Pomelli, W.J. Ochterski, L.R. Martin, K. Morokuma, G.V. Zakrzewski,
A.G. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, D.A. Daniels, O. Farkas, B.J.
Acknowledgment
This work is supported by theMinistry of Science and Environ-
ment of Serbia, project No 172016.