Journal of the American Chemical Society
Communication
enantioselectivities of up to 99% ee. Unhindered N-alkyl imines
are readily hydrogenated without catalyst−product adduct
formation, in contrast to what is typical for FLPs. Most
importantly, the first results on FLP-catalyzed asymmetric
hydrogenations of enamines are presented. Because the catalyst
itself can be synthesized from readily available starting materials
with high enantiopurity, the simplicity of the synthesis and
overall structure makes (S)-9 a good candidate for further
development in asymmetric metal-free hydrogenation.
I.; Rokob, T. A.; Kiral
́
y, P.; Tar
́
kan
́
yi, G.; Soos
́
, T. Angew. Chem., Int. Ed.
2
010, 49, 6559. (j) Farrell, J. M.; Hatnean, J. A.; Stephan, D. W. J. Am.
Chem. Soc. 2012, 134, 15728. (k) Chernichenko, K.; Nieger, M.; Leskela,
̈
M.; Repo, T. Dalton Trans. 2012, 41, 9029. (l) Wang, G.; Chen, C.; Du,
T.; Zhong, W. Adv. Synth. Catal. 2014, 356, 1747. (m) Hatnean, J. A.;
Thomson, J. W.; Chase, P. A.; Stephan, D. W. Chem. Commun. 2014, 50,
3
01.
6) (a) Geier, S. J.; Chase, P. A.; Stephan, D. W. Chem. Commun. 2010,
6, 4884. (b) Stephan, D. W.; Greenberg, S.; Graham, T. W.; Chase, P.;
Hastie, J. J.; Geier, S. J.; Farrell, J. M.; Brown, C. C.; Heiden, Z. M.;
Welch, G. C.; Ullrich, M. Inorg. Chem. 2011, 50, 12338. (c) Eros, G.;
Nagy, K.; Papai, I.; Nagy, P.; Kiraly, G.; Tarkanyi, G.; Soos
, T. Chem.
(
4
̋
ASSOCIATED CONTENT
Supporting Information
́
́
́
́
́
■
Eur. J. 2012, 18, 574. (d) Scott, D. J.; Fuchter, M. J.; Ashley, A. E. Angew.
Chem., Int. Ed. 2014, 53, 10218. (e) Clark, E. R.; Ingleson, M. J. Angew.
Chem., Int. Ed. 2014, 53, 11306.
*
S
parameters for (S)-9 (CCDC-1036946), (R)-9 (CCDC-
(7) (a) Mahdi, T.; Stephan, D. W. J. Am. Chem. Soc. 2014, 136, 15809.
(b) Scott, D. J.; Fuchter, M. J.; Ashley, A. E. J. Am. Chem. Soc. 2014, 136,
1
036947), and (R)-17·HCl (CCDC-1036948) are available
15813.
from the Cambridge Crystallographic Data Centre.
(8) (a) Chen, D.; Klankermayer, J. Chem. Commun. 2008, 2130.
(b) Chen, D.; Wang, Y.; Klankermayer, J. Angew. Chem., Int. Ed. 2010,
AUTHOR INFORMATION
49, 9475. (c) Ghattas, G.; Chen, D.; Pan, F.; Klankermayer, J. Dalton
Trans. 2012, 41, 9026.
(9) (a) Liu, Y.; Du, H. J. Am. Chem. Soc. 2013, 135, 6810. (b) Wei, S.;
Du, H. J. Am. Chem. Soc. 2014, 136, 12261. (c) Zhang, Z.; Du, H. Angew.
Chem., Int. Ed. 2015, 54, 623.
Notes
(10) (a) Rokob, T. A.; Hamza, A.; Pap
0701. (b) Rokob, T. A.; Papai, I. Top. Curr. Chem. 2013, 332, 157.
11) Sumerin, V.; Chernichenko, K.; Nieger, M.; Leskela, M.; Rieger,
B.; Repo, T. Adv. Synth. Catal. 2011, 353, 2093.
12) (a) Singaram, B.; Goralski, C. T.; Rangaishenvi, M. V.; Brown, H.
C. J. Am. Chem. Soc. 1989, 111, 384. (b) Sigaram, B.; Rangaishenvi, M.
V.; Brown, H. C.; Goralski, C. T.; Hasha, D. L. J. Org. Chem. 1991, 56,
1543. (c) Singaram, B.; Goralski, C. T.; Fisher, G. B. J. Org. Chem. 1991,
56, 5691. (d) Parks, D. J.; Piers, W. E.; Yap, G. P. A. Organometallics
́
ai, I. J. Am. Chem. Soc. 2009, 131,
1
(
́
The authors declare no competing financial interest.
̈
ACKNOWLEDGMENTS
This work was supported by the Academy of Finland (139550,
76586), the Inorganic Materials Chemistry Graduate Program,
■
2
(
COST Action CM0905, and the Hungarian Scientific Research
Fund (OTKA, K-81927).
1
998, 17, 5492. (e) Schwendemann, S.; Oishi, S.; Saito, S.; Fro
Kehr, G.; Erker, G. Chem.Asian J. 2013, 8, 212. (f) Lindqvist, M.;
Axenov, K.; Nieger, M.; Raisanen, M.; Leskela,
M.; Repo, T. Chem.
Eur. J. 2013, 19, 10412.
̈
hlich, R.;
REFERENCES
■
̈
̈
̈
(
1) Selected reviews of TM-catalyzed asymmetric hydrogenation of
enamines and imines: (a) Spindler, F.; Blaser, H.-U. Enantioselective
Hydrogenation of CN Functions and Enamines. In Handbook of
Homogenous Hydrogenation; de Vries, J. G., Elsevier, C. J., Eds.; Wiley-
VCH: Weinheim, Germany, 2007; Vol. 3, pp 1193−1214. (b) Xie, J.-H.;
Zhu, S.-F.; Zhou, Q.-L. Chem. Rev. 2011, 111, 1713. (c) Yu, Z.; Jin, W.;
Jiang, Q. Angew. Chem., Int. Ed. 2012, 51, 6060. (d) Xie, J.-H.; Zhu, S.-F.;
Zhou, Q.-L. Chem. Soc. Rev. 2012, 41, 4126.
(13) Morrison, D. J.; Piers, W. E.; Parvez, M. Synlett 2004, 2429.
(14) García-Fortanet, J.; Kessler, F.; Buchwald, S. L. J. Am. Chem. Soc.
2
009, 131, 6676.
15) (a) Jurícek, M.; Brath, H.; Kasak
Chem. 2007, 692, 5279. (b) Brath, H.; Mesk
Org. Chem. 2009, 3315.
(
̌
́
, P.; Putala, M. J. Organomet.
ova, M.; Putala, M. Eur. J.
̌
́
(
16) Mesk
̌ ́
ova, M.; Putala, M. Tetrahedron Lett. 2011, 52, 5379.
(
2) (a) Nugent, T. C. Chiral Amine Synthesis: Methods, Developments
1
19
(17) (S)-8 was analyzed by H and F NMR spectroscopy. Because of
and Applications; Wiley-VCH: Weinheim, Germany, 2010. (b) Nugent,
T. C.; El-Shazly, M. Adv. Synth Catal. 2010, 352, 753.
its high moisture and air sensitivity, it could not be isolated as a pure
substance and fully characterized.
(
3) (a) Garrett, C. E.; Prasad, K. Adv. Synth. Catal. 2004, 346, 889.
b) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2001, 40, 3726.
4) (a) Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W.
Science 2006, 314, 1124. (b) Stephan, D. W. Org. Biomol. Chem. 2008, 6,
535. (c) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2010, 49, 171.
d) Powers, P. P. Nature 2010, 463, 171. (e) Erker, G. C. R. Chim. 2011,
4, 831. (f) Stephan, D. W. Org. Biomol. Chem. 2012, 10, 5740.
(18) Jeulin, S.; de Paule, S. D.; Ratovelomanana-Vidal, V.; Genet, J.-P.;
(
Champion, N.; Dellis, P. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5799.
(
(
19) The absolute configurations of (S)-9, (R)-9, and (R)-17·HCl
were determined crystallographically using the effects of anomalous
1
(
1
dispersion (see the Supporting Information).
(
20) Synthesis of the −N(i-Pr) analogue of (S)-9 was tedious; H
2
2
activation was slower and irreversible as a result of the amine bulkiness,
(
g) Hounjet, L. J.; Stephan, D. W. Org. Process Res. Dev. 2014, 18, 385.
thus making it less attractive for further studies. The −N(Me) analogue
2
(
h) Paradies, J. Angew. Chem., Int. Ed. 2014, 53, 3552. (i) Feng, X.; Du,
of 7 could not be converted into the corresponding aminoborane.
H. Tetrahedron Lett. 2014, 55, 6959. (j) Shi, L.; Zhou, Y.-G.
ChemCatChem 2015, 7, 54.
(
21) Computational details are provided in the Supporting
Information.
22) The exergonicity of H activation is reduced notably for the
(
5) (a) Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew.
Chem., Int. Ed. 2007, 46, 8050. (b) Spies, P.; Schwendemann, S.; Lange,
S.; Kehr, G.; Frohlich, R.; Erker, G. Angew. Chem., Int. Ed. 2008, 47,
543. (c) Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Commun. 2008,
701. (d) Sumerin, V.; Schulz, F.; Atsumi, M.; Wang, C.; Nieger, M.;
M.; Repo, T.; Pyykko, P.; Rieger, B. J. Am. Chem. Soc. 2008, 130,
4117. (e) Jiang, C.; Blacque, O.; Berke, H. Chem. Commun. 2009, 5518.
f) Rokob, T. A.; Hamza, A.; Stirling, A.; Papai, I. J. Am. Chem. Soc. 2009,
31, 2029. (g) Axenov, K. V.; Kehr, G.; Frolich, R.; Erker, G. J. Am.
Chem. Soc. 2009, 131, 3454. (h) Axenov, K. V.; Kehr, G.; Frolich, R.;
Erker, G. Organometallics 2009, 28, 5148. (i) Eros, G.; Mehdi, H.; Papai,
(
2
conditions used in dehydrogenation experiments (ΔG = −5.0 kcal/mol
for T = 80 °C and solvent = benzene). It should also be noted that the
continuous release of H from the solution shifts the reaction toward H
̈
7
1
2
2
elimination. These nonequilibrium conditions are not taken into
account in the present computational approach.
Leskela,
1
(
1
̈
̈
(
23) (a) Schwendemann, S.; Tumay, T. A.; Axenov, K. V.; Peuser, I.;
Kehr, G.; Frohlich, R.; Erker, G. Organometallics 2010, 29, 1067.
b) Stephan, D. W.; Erker, G. Top. Curr. Chem. 2013, 332, 85.
́
̈
̈
(
̈
̋
́
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX