10.1002/cctc.201700052
ChemCatChem
COMMUNICATION
Borrego, E. Álvarez, N. Khiar, I. Fernandez, Org. Lett., 2016, 18,
3258−3261. For pioneer works with aminoacid-derived catalysts see: h)
A. V. Malkov, A. Mariani, K. N. MacDougal, P. Kočovský, Org. Lett.
2004, 6, 2253-2256; i) A. V. Malkov, M. Figlus, S. Stončius, P. Kočovský,
J. Org. Chem. 2009, 74, 5839-5849; j) A. V. Malkov, A. J. P. S. Liddon,
P. Ramírez-López, L. Bendová, D. Haigh, P. Kočovský, Angew. Chem.
Int. Ed., 2006, 45, 1432-1435; see also reviews, ref. 7a and 7b.
[8] Selected picolinamides catalysts: a) O. Onomura, Y. Kouchi, F. Iwasaki,
Y. Matsumura, Tetrahedron Lett. 2006, 47, 3751-3754; b) H. Zheng, J.
Deng, W. Li, X. Zhang, Tetrahedron Lett. 2007, 48, 7934-7937; c) S.
Guizzetti, M. Benaglia, R. Annunziata, F. Cozzi, Tetrahedron 2009, 65,
6354-6363; d) S. Guizzetti, M. Benaglia, S. Rossi, Org. Lett. 2009, 11,
2928-2931; e) Y. Jiang, X. Chen, Y. Zheng, Z. Xue, C. Shu, W. Yuan, X.
Zhang, Angew. Chem. Int. Ed. 2011, 50, 7304-7307; f) Y. Jiang, X.
Chen, X. Hu, C. Shu, Y. Zhang, Y. Zheng, C. Lian, W. Yuan, X. Zhang,
Adv. Synth. Catal. 2013, 355, 1931-1936; g) A. Genoni, M. Benaglia, E.
Massolo, S. Rossi, Chem. Commun. 2013, 49, 8365-8367; h) P. C.
Barrulas, A. Genoni, M. Benaglia, A. J. Burke,. Eur. J. Org. Chem. 2014,
7339-7442.
[9] For a review, see: a) G. Lelais, D. W. C. MacMillan, Aldrichimica, 2006,
39, 79.; for the combination of aminocatalysis with the generation of
radical intermediates, by the so called SOMO catalysis or by photoredox
catalysis, respectively, see: b) T. D. Beeson, A. Mastracchio, J. Hong, K.
Ashton, D. W. C. MacMillan, Science, 2007, 316, 582; c) D. Nicewicz, D.
W. C. MacMillan, Science, 2008, 322, 77.
[10] See S. G. Ouellet, J. B. Tuttle, D.W. C. Mac-Millan, J. Am. Chem. Soc,
2005, 127, 32 and references cited.
[11] Studies with immobilized catalysts are underway in our group; the results
will be reported in due course.
In model A, that leads to the formation of the experimentally
preferred (R) enantiomer, both the aromatic ring at the imine
carbon and the protecting group at the imine nitrogen do not
experiment the severe steric repulsions that greatly destabilize
TS of model B.
In conclusion, a new class of chiral Lewis bases for imines
hydrosilylation was developed; the most active catalyst
promoted the reduction of a wide variety of functionalized
substrates,
very
often
in
quantitative
yields
and
enantioselectivities that typically were higher than 90%, and in
some instances reached 98%. Remarkably, the chiral Lewis
base of choice efficiently catalyzed the reaction with a catalyst
loading as low as 0.1% mol without any erosion of its
stereoselectivity. The synthesis of enantiopure chiral amines on
multi-gram scale, as well as the possibility to perform the
organocatalytic enantioselective reduction under continuous flow
conditions have been demonstrated.[19] We believe that the
simple experimental procedure, the low cost of the reagents, the
mild reaction conditions and straightforward isolation of the
product after an aqueous work up, the exceptionally low loading
of the metal-free catalytic species, and the possibility to realize
in continuo processes, make the methodology attractive also for
industrial applications.
[12] For the use of triazole ring as linker in the immobilization of chiral
organocatalysts in our previous works see: a) R. Porta, M. Benaglia, F.
Coccia, F. Cozzi, A. Puglisi, Adv. Synth. Catal., 2015, 357, 377-383; b)
R. Porta, M. Benaglia, A. Puglisi, A. Mandoli, A. Gualandi, P.G. Cozzi,
ChemSusChem, 2014, 7, 3534-3540; c) V. Chiroli, M. Benaglia, A.
Puglisi, R. Porta, R. P. Jumde, A. Mandoli, Green Chem., 2014, 16,
2798-2806.
[13] As reported in Scheme 1, also chiral picolinamides 3a and 3b promoted
the reduction with excellent results; however, they proofed to be
catalysts of less general applicability, compared to 3c, that was selected
as catalyst of choice.
Acknowledgements
[14] The definition of ACE was recently proposed in the attempt to compare
and evaluate the efficiency of different catalysts, considering the level of
enantioselectivity and the yield guaranteed by the catalyst, the molecular
weight of the product and of the catalysts itself. See: S. El-Fayyoumy, M.
H. Todd, C. J. Richards, Beilstein J. Org. Chem. 2009, 5, 67.
[15] For experimental details please see the Supporting Information.
[16] For two very recent contributions on the organocatalyzed reduction as
strategy for the synthesis of biologically active chiral amines see: a) V.
N. Wakchaure, P. S. J. Kaib, M. Leutzsch, B. List, Angew. Chem. Int. Ed.
M.B. thanks Università degli Studi di Milano for financial support
(H2020 Transition Grant); D.B., E.M. and R.P. thank Università
degli Studi di Milano for a Ph.D. fellowship.
Keywords: Enantioselective reduction • Trichlorosilane • Chiral
amines • Lewis bases • Organocatalysis
2015, 54, 11852–11856; b) D. Brenna, M. Benaglia,
R Porta, S.
Fernandes, A. J. Burke, Eur. J. Org. Chem. 2016, doi:
10.1002/ejoc.201601268.
[1] Chiral Amine Synthesis: Methods, Developments and Applications (Ed.:
T. C. Nugent), Wiley-VCH, Weinheim, 2010.
[17] Reviews on the synthesis of APIs under continuous flow conditions: a) B.
Gutmann, D. Cantillo, C. O. Kappe, Angew. Chem. Int. Ed. 2015, 54,
6688-6728; b) R. Porta, M. Benaglia, A. Puglisi, Org. Process Res. Dev.
2016, 20, 2-25; c) for a comprehensive review on the synthesis of
natural products in flow see: J. C. Pastre, D. L. Browne, S. V. Ley,
Chem. Soc. Rev., 2013, 42, 8849-8869.
[18] a) X.W. Liu, Y. Yan, Y. Q. Wang, C. Wang, J. Sun, Chem. Eur. J. 2012,
18, 9204-9207; for a metal-free reduction of the nitro group: b) M.
Orlandi, F. Tosi, M. Bonsignore, M. Benaglia, Org. Lett., 2015, 17, 3941-
3943; c) M. Orlandi, M. Benaglia, F. Tosi, R. Annunziata, F. Cozzi J. Org.
Chem., 2016, 81, 3037–3041.
[2] Recent general reviews on asymmetric hydrogenation: a) A. M. Palmer,
A. Zanotti-Gerosa, Current Opinion in Drug Discovery and Development
2010, 13, 698; b) G. Shang, W. Li, X. Zhang. Transition Metal-Catalyzed
Homogeneous Asymmetric Hydrogenation, in: Catalytic Asymmetric
Synthesis, 3rd edn., I. Ojima Ed., Wiley, Hoboken, 2010; c) for a special
issue on hydrogenation and transfer hydrogenation see: M. J. Krische,
Y. Sun, Eds. Acc. Chem. Res. 2007, 40, 1237-1419.
[3] Reviews: a) J.-H. Xie, S.-F. Zhu, Q.-L. Zhou, Chem. Rev. 2011, 111,
1713–1760; b) D.-S. Wang, Q.-A. Chen, S.-M. Lu, Y.-G. Zhou, Chem.
Rev. 2012, 112, 2557–2590
[19] For a few other examples of organocatalyzed enantioselective reactions
in microreactors see: a) A. Odedra, P. H. Seeberger, Angew. Chem. Int.
Ed., 2009, 48, 2699; b) S. Fritzsche, S. Ohla, P. Glaser, D. S. Giera, M.
Sickert, C. Schneider, D. Belder, Angew. Chem. Int. Ed., 2011, 50, 9467;
c) E. Sugiono, M. Rueping, Beilstein J. Org. Chem., 2013, 9, 2457; d) L.
Carroccia, B. Musio, L. Degennaro, G. Romanazzi, R. Luisi, J. Flow
Chem., 2013, 3, 29; e) S. Rossi, M. Benaglia, A. Puglisi, C. C. De
Filippo, M. Maggini, J. Flow. Chem. 2014, 5, 17; f) R. Porta, M. Benaglia,
F. Coccia, S. Rossi, A. Puglisi, Symmetry 2015, 7, 1395. For recent
reviews on stereoselective catalytic reactions in flow see: g) A. Puglisi,
M. Benaglia, V. Chiroli, Green Chem., 2013, 15, 1790-1813; h) I.
Atodiresei, C. Vila, M. Rueping, ACS Catal., 2015, 5, 1972-1985; i) A.
Puglisi, M. Benaglia, R. Porta, F. Coccia, Current Organocatalysis, 2015,
2, 79-101; j) R. Munirathinam, J. Huskens, W. Verboom, Adv. Synth.
Catal., 2015, 357, 1093-1123; k) C. Rodríguez-Escrich, M. A. Pericàs,
Eur. J. Org. Chem., 2015, 1173.
[4] Review: a) S. Rossi, M. Benaglia, E. Massolo, L. Raimondi, Catal.
Science Technol., 2014, 9, 2708-2723. For two reviews on Bronsted
acids-catalyzed reactions: b) D. Parmar, E. Sugiono, S. Raja, M.
Rueping, Chem. Rev., 2014, 114, 9407-9153 and c) T. Akiyama, K. Mori,
Chem. Rev., 2015, 115, 9277-9306.
[5] For a review on low loading chiral organocatalysts see: F. Giacalone, M.
Gruttadauria, P. Agrigento, R. Noto, Chem. Soc. Rev., 2012, 41, 2406-
2447.
[6] Reviews: a) M. Benaglia, S. Guizzetti, L. Pignataro, Coord. Chem. Rev.,
2008, 252, 492; b) S. E. Denmark, G. L. Beutner, Angew. Chem. Int. Ed.,
2008, 47, 1560; c) M. Benaglia, S. Guizzetti, S. Rossi, “Silicate-mediated
stereoselective reactions catalyzed by chiral Lewis bases” in Catalytic
Methods in Asymmetric Synthesis: Advanced Materials, Techniques and
Applications 2011, ed. M. Gruttadauria, F. Giacalone, John Wiley and
Sons.
[7] Reviews: a) S. Guizzetti, M. Benaglia, Eur. J. Org. Chem., 2010, 5529-
5541; b) S. Jones, C. J. A. Warner, Org Biomol. Chem., 2012, 10, 2189-
2200. For selected, recent contributions not included in previous
reviews: c) L. Chen, C. Wang, L. Zhou, J. Sun, Adv. Synth. Catal. 2014,
356, 2224–2230; d) X.-Y. Hu, M.-M. Zhang, C. Shu, Y.-H. Zhang, L.-H.
Liao, W.-C. Yuan, X.-M. Zhang, Adv. Synth. Catal. 2014, 356, 3539–
3544; e) C. Wang, X. Wu, L. Zhou, J. Sun, Org. Biomol. Chem., 2015,
13, 577–582; f) J. Ye, C. Wang, L. Chen, X. Wu, L. Zhou, J. Sun, Adv.
Synth. Catal. 2016, 358, 1042-1048.; g) A. Chelouan, R. Recio, L. G.
This article is protected by copyright. All rights reserved.