Scheme 1
.
Hydrogen Transfer Reaction
Table 2. Survey of Benzothiazolines for the Asymmetric
Transfer Hydrogenation
a
b
entry
reducing agent
R
yield (%)
ee (%)
1
2
3
4
5
6
a
3a
3b
3c
3d
3e
3f
b
Ph
4-MeOC
6 4
4-NO C H
2-naphthyl
1-naphthyl
n-propyl
97
93
96
89
84
96
92
90
84
97
88
94
6
H
4
2
phosphoric acids. Herein, we reveal the first example of
utilizing benzothiazoline as a novel hydrogen source for the
asymmetric transfer hydrogenation of imines.
Although the exposure of ketimine 1a with 2-phenylben-
zothiazoline 3a (2 equiv) in the presence of phosphoric acid
Isolated yield. Enantiomeric excess was determined by chiral HPLC
analysis.
5
a furnished amine 2a with low enantioselectivity (Table 1,
entry 1), increasing the size of the substituents at 3,3′-
positions of the catalyts significantly improved both chemical
yields and enantioselectivities (entries 2-6). Gratifyingly,
phosphoric acid 5h gave the best result with 97% yield and
Further screening for the reaction conditions revealed that
the catalyst loading could be reduced to 2 mol % without
compromising the enantioselectivity. Thus, exposure of imine
1
a to 1.4 equiv of benzothiazoline 3d in the presence of 5h
9
2% ee (entry 8).
in mesitylene at 50 °C for 26 h provided reduction product
14
2
a in 90% yield with 98% ee. With the optimized reaction
conditions in hand, we set out to define the scope of the
Table 1. Enantioselective Transfer Hydrogenation Mediated by
Benzothiazoline
(
7) (a) Ouellet, S. G.; Tuttle, J. B.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2005, 127, 32–33. (b) Tuttle, J. B.; Ouellet, S. G.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2006, 128, 12662–12663. (c) Yang, J. W.; Fonseca,
M. T. H.; List, B. Angew. Chem., Int. Ed. 2004, 43, 6660–6662. (d) Yang,
J. W.; Fonseca, M. T. H.; Vignola, N.; List, B. Angew. Chem., Int. Ed.
2
005, 44, 108–110. (e) Yang, J. W.; Hechavarria Fonseca, M. T.; List, B.
J. Am. Chem. Soc. 2005, 127, 15036–15037. (f) Mayer, S.; List, B. Angew.
Chem., Int. Ed. 2006, 45, 4193–4195. (g) Martin, N. J. A.; List, B. J. Am.
Chem. Soc. 2006, 128, 13368–13369. (h) Yang, J. W.; List, B. Org. Lett.
2
4
7
006, 8, 5653–5655. (i) Zhao, G.-L.; C o´ rdova, A. Tetrahedron Lett. 2006,
7, 7417–7421. (j) Zhou, J.; List, B. J. Am. Chem. Soc. 2007, 129, 7498–
499. (k) Rueping, M.; Theissmann, T.; Raja, S.; Bats, J. W. AdV. Synth.
Catal. 2008, 350, 1001–1006. (l) Rueping, M.; Antonchick, A. P. Angew.
Chem., Int. Ed. 2008, 47, 5836–5838. (m) Martin, N. J. A.; Cheng, X.;
List, B. J. Am. Chem. Soc. 2008, 130, 13862–13863.
(
8) Han, Z.-Y.; Xiao, H.; Chen, X.-H.; Gong, L.-Z. J. Am. Chem. Soc.
2
009, 131, 9182–9183.
a
b
(9) Davies, P. R.; Askew, H. F. US Patent 4708810, 1987.
entry
catalyst
time (h)
yield (%)
ee (%)
(
10) (a) Chikashita, H.; Miyazaki, M.; Itoh, K. Synthesis 1984, 308–
310. (b) Chikashita, H.; Miyazaki, M.; Itoh, K. J. Chem. Soc., Perkin Trans.
1
2
3
4
5
6
7
8
a
5a
5b
5c
5d
5e
5f
5g
5h
b
22
21
22
21
21
24
22
21
63
67
91
93
96
53
94
97
11
79
75
62
84
84
84
92
1
1987, 699–706.
(11) For our reports, see: (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe,
K. Angew. Chem., Int. Ed. 2004, 43, 1566–1568. (b) Akiyama, T.; Morita,
H.; Itoh, J.; Fuchibe, K. Org. Lett. 2005, 7, 2583–2585. (c) Akiyama, T.;
Saitoh, Y.; Morita, H.; Fuchibe, K. AdV. Synth. Catal. 2005, 347, 1523–
1
9
2
526. (d) Akiyama, T.; Itoh, J.; Fuchibe, K. AdV. Synth. Catal. 2006, 348,
99–1010. (e) Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc.
006, 128, 13070–13071. (f) Akiyama, T.; Tamura, Y.; Itoh, J.; Morita,
H.; Fuchibe, K. Synlett 2006, 141–143. (g) Yamanaka, M.; Itoh, J.; Fuchibe,
K.; Akiyama, T. J. Am. Chem. Soc. 2007, 129, 6756–6764. (h) Akiyama,
T.; Honma, Y.; Itoh, J.; Fuchibe, K. AdV. Synth. Catal. 2008, 350, 399–
Isolated yield. Enantiomeric excess was determined by chiral HPLC
analysis.
4
02. (i) Itoh, J.; Fuchibe, K.; Akiyama, T. Synthesis 2008, 1319–1322. (j)
Itoh, J.; Fuchibe, K.; Akiyama, T. Angew. Chem., Int. Ed. 2008, 47, 4016–
018. (k) Akiyama, T.; Suzuki, T.; Mori, K. Org. Lett. 2009, 11, 2445–
2447. (l) Akiyama, T.; Kato, T.; Mori, K. Angew. Chem., Int. Ed. 2009,
8, 4226–4228. (m) Akiyama, T.; Morita, H.; Bachu, P.; Mori, K.;
4
We further examined a range of 2-substituted benzothia-
zolines in the asymmetric transfer hydrogenation reaction
by means of phosphoric acid 5h (Table 2). Gratifyingly, ee
could be increased to 97% by using 3d bearing a 2-naphthyl
group (entry 4). Conversely, replacement with a 1-naphthyl
group reduced the enantioselectivity (entry 5). Interestingly,
alkyl group substituted benzothiazoline 3f also exhibited high
reactivity without steric hindrance (entry 6).
4
Yamanaka, M.; Hirata, T. Tetrahedron 2009, 65, 4950–4956. (n) Akiyama,
T.; Katoh, T.; Mori, K.; Kanno, K. Synlett 2009, 1664–1666.
(
12) For reviews on Brønsted acid catalysis, see: (a) Akiyama, T.; Itoh,
J.; Fuchibe, K. AdV. Synth. Catal. 2006, 348, 999–1010. (b) Akiyama, T.
Chem. ReV. 2007, 107, 5744–5758. (c) Connon, S. J. Angew. Chem., Int.
Ed. 2006, 45, 3909–3912. (d) Akiyama, T. Acid Catalysis in Modern
Organic Synthesis; Yamamoto, H., Ishihara, K., Eds.; Wiley-VCH: Wein-
heim, 2008; Vol. 1, pp 62-107. (e) Terada, M. Chem. Commun. 2008,
4097–4112See also references cited therein.
Org. Lett., Vol. 11, No. 18, 2009
4181