C O M M U N I C A T I O N S
(11) (a) Crimmin, M. R.; Casely, I. J.; Hill, M. S. J. Am. Chem. Soc. 2005, 127,
2042–2043. (b) Crimmin, M. R.; Arrowsmith, M.; Barrett, A. G. M.; Casely,
I. J.; Hill, M. S.; Procopiou, P. A. J. Am. Chem. Soc. 2009, 131, 9670–
9685. (c) Horrillo-Mart`ınez, P.; Hultzsch, K. C. Tetrahedron Lett. 2009,
50, 2054–2056. (d) Neal, S. R.; Ellern, A.; Sadow, A. D. J. Organomet.
Chem. 2010, doi: 10.1016/j.jorganchem.2010.08.057.
supported by a GAANN Fellowship. Aaron D. Sadow is an Alfred
P. Sloan Fellow.
Note Added after ASAP Publication. Scheme 1 contained an error
in the version published ASAP December 1, 2010; the correct version
reposted December 15, 2010.
(12) (a) Han, R.; Looney, A.; Parkin, G. J. Am. Chem. Soc. 1989, 111, 7276–
7278. (b) Han, R.; Parkin, G. J. Am. Chem. Soc. 1992, 114, 748–757. (c)
Chisholm, M. H.; Eilerts, N. W.; Huffman, J. C.; Iyer, S. S.; Pacold, M.;
Phomphrai, K. J. Am. Chem. Soc. 2000, 122, 11845–11854.
Supporting Information Available: Procedures and characterization
data for compounds 1, 2, 11-15, representative kinetic plots, and X-ray
crystallographic data. This material is available free of charge via the
(13) Dunne, J. F.; Su, J.; Ellern, A.; Sadow, A. D. Organometallics 2008, 27,
2399–2401.
(14) (a) Solid angles of [ToM] and Me in ToMMgMe are 7.4 and 2 steradians,
as determined by the program Solid-G using X-ray crystallographic
coordinates. (b) White, D.; Coville, N. J. In AdVances in Organometallic
Chemistry; Academic Press: New York, 1994; Vol. 36, pp 95-158. (c)
Guzei, I. A.; Wendt, M. Dalton Trans. 2006, 3991–3999. (d) Guzei, I. A.;
Wendt, M. Solid-G; UW-Madison, WI, USA, 2004.
References
(15) (a) Hultzsch, K. C.; Hampel, F.; Wagner, T. Organometallics 2004, 23,
2601–2612. (b) Thomson, R. K.; Bexrud, J. A.; Schafer, L. L. Organo-
metallics 2006, 25, 4069–4071.
(16) Espenson, J. H. Chemical kinetics and reaction mechanisms, 2nd ed.;
McGraw-Hill: New York, 1995.
(17) (a) See SI for kinetic analysis. (b) Cornish-Bowden, A. Fundamentals of
Enzyme Kinetics, 3rd ed.; Portland Press: London, 2004; pp 137-141.
(18) A referee suggested an alternative possibility for the apparent inert nature
of 12, where insertion is reversible but favors the magnesium-amido
reactant. While this explanation cannot be ruled out for the stoichiometric
reaction, the isotope effect and substrate saturation data, taken together,
are not consistent with a reversible insertion under catalytic conditions.
(19) (a) Bain, A. D.; Cramer, J. A. J. Phys. Chem. 1993, 97, 2884–2887. (b)
Bain, A. D. CIFIT; Chemistry Department, McMaster University, 2003.
(c) Kristian, K. E.; Iimura, M.; Cummings, S. A.; Norton, J. R.; Janak,
K. E.; Pang, K. Organometallics 2009, 28, 493–498.
(1) (a) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673–686. (b) Mu¨ller,
T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. ReV. 2008,
108, 3795–3892.
(2) Gagne, M. R.; Marks, T. J. J. Am. Chem. Soc. 1989, 111, 4108–4109.
(3) (a) Gagne, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1992, 114,
275–294. (b) Gribkov, D. V.; Hultzsch, K. C.; Hampel, F. J. Am. Chem.
Soc. 2006, 128, 3748–3759.
(4) Stubbert, B. D.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 6149–6167.
(5) (a) Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1990,
112, 894–896. (b) Leitch, D. C.; Turner, C. S.; Schafer, L. L. Angew. Chem.,
Int. Ed. 2010, 49, 6382–6386.
(6) Katayev, E.; Li, Y.; Odom, A. L. Chem. Commun. 2002, 838–839.
(7) (a) Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. J. Am. Chem. Soc.
1988, 110, 6738–6744. (b) Dorta, R.; Egli, P.; Zürcher, F.; Togni, A. J. Am.
Chem. Soc. 1997, 119, 10857–10858.
(8) (a) Cowan, R. L.; Trogler, W. C. Organometallics 1987, 6, 2451–2453.
(b) Cowan, R. L.; Trogler, W. C. J. Am. Chem. Soc. 1989, 111, 4750–
4761. (c) Seligson, A. L.; Trogler, W. C. Organometallics 1993, 12, 744–
751.
(9) (a) Neukom, J. D.; Perch, N. S.; Wolfe, J. P. J. Am. Chem. Soc. 2010, 132,
6276–6277. (b) Hanley, P. S.; Markovic, D.; Hartwig, J. F. J. Am. Chem.
Soc. 2010, 132, 6302–6303.
(20) Mg-N bonds are highly polarized, and dissociation rates of Mg-N bonds
in 1 and 11-13 are likely equal to or greater than rates for 2 based on
Mg-N bond length and strain associated with κ3-coordination.
(21) (a) Henderson, K. W.; Allan, J. F.; Kennedy, A. R. Chem. Commun. 1997,
1149–1150. (b) He, X.; Morris, J. J.; Noll, B. C.; Brown, S. N.; Henderson,
K. W. J. Am. Chem. Soc. 2006, 128, 13599–13610.
(22) Manna, K.; Xu, S.; Sadow, A. D. Angew. Chem., Int. Ed., accepted for
publication.
(10) Motta, A.; Lanza, G.; Fragala, I. L.; Marks, T. J. Organometallics 2004,
23, 4097–4104.
JA108881S
9
J. AM. CHEM. SOC. VOL. 132, NO. 50, 2010 17683