ACS Combinatorial Science
Research Article
Scheme 2. Possible Mechanism for the Formation of 4
FT-IR-Tensor 27 spectrometer in KBr pellets and reported in
Jiangsu Higher Education Institutions, the Qing-Lan Project
(12QLG006).
1
cm−1. H NMR spectra were measured on a Bruker DPX 400
MHz spectrometer in DMSO-d6 with chemical shift (δ) given
in ppm relative to TMS as an internal standard. HRMS (ESI)
was determined by using microTOF-Q II HRMS/MS instru-
ment (BRUKER).
REFERENCES
■
(1) (a) Drewry, D. H.; Macarron, R. Enhancements of screening
collections to address areas of unmet medical need: An industry
perspective. Curr. Opin. Chem. Biol. 2010, 14, 289−298. (b) Dandapani,
S.; Marcaurelle, L. A. Grand challenge commentary: Accessing new
chemical space for “undruggable” targets. Nat. Chem. Biol. 2010, 6,
Typical Procedure for the Preparation of Bis-Pyrans
4{1,1}. Typically, in a 10 mL reaction vial, 5-hydroxy-2-
(hydroxymethyl)-4H-pyran-4-one 1{1} (0.142 g, 1.0 mmol), 4-
chlorobenzaldehyde 2{1} (0.140 g, 1.0 mmol), 2-aminoprop-1-
ene-1,1,3-tricarbonitrile 3 (0.132 g, 1.0 mmol), and EtOH (1.5
mL), as well as Et3N (0.101g, 1.0 mmol), were mixed and then
capped. (The automatic mode of stirring helped the mixing and
uniform heating of the reactants.) The mixture was heated for
16 min at 80 °C under microwave irradiation. Upon
completion, monitored by TLC, the reaction mixture was
then cooled to room temperature and was then neutralized by
10% HCl solution. Next, the system was diluted with cold water
861−863. (c) Bleicher, K. H.; Bohm, H. J.; Muller, K.; Alanine, A. I.
̈
̈
Hit and lead generation: Beyond high-throughput screening. Nat. Rev.
Drug Discovery 2003, 2, 369−378. (d) Schreiber, S. L. Target-oriented
and diversity-oriented organic synthesis in drug discovery. Science
2000, 287, 1964−1969. (5) Welsch, M. E.; Snyder, S. A.; Stockwell, B.
R. Privileged scaffolds for library design and drug discovery. Curr.
Opin. Chem. Biol. 2010, 14, 347−361.
(2) (a) Gottlieb, Otto R.; Rego de Sousa, J. Chemistry of Brazilian
Leguminosae. XLII. New peltogynoids of goniorrhachis marginata.
Phytochemistry 1974, 13, 1229−1231. (b) Malan, J. C. S.; Young, D.
A.; Steynberg, J. P.; Ferreira, D. Oligomeric flavanoids. Part 9. The first
biflavanoids based on mopanol and peltogynol as inceptive electro-
philes. J. Chem. Soc., Perkin Trans. 1 1990, 219−225. (c) De Almeida,
M. E.; Gottlieb, O. R.; Rego de Sousa, J.; Teixeira, M. A. Chemistry of
Brazilian Leguminosae. XLIII. New peltogynoids from three Peltogyne
species. Phytochemistry 1974, 13, 1225−1228. (d) Drewes, S. E.;
Mashimbye, M. J.; Field, J. S.; Ramesar, N. 11,11-Dimethyl-1,3,8,10-
tetrahydroxy-9-methoxy peltogynan and three pentacyclic triterpenes
from Cassine transvaalensis. Phytochemistry 1991, 30, 3490−3493.
(e) Lin, Y.-L.; Shen, C.-C.; Huang, Y.-J.; Chang, Y.-Y. Homoflavonoids
from Ophioglossum petiolatum. J. Nat. Prod. 2005, 68, 381−384.
(3) Ahmadu, A.; Abdulkarim, A.; Grougnet, R.; Myrianthopoulos, V.;
Tillequin, F.; Magiatis, P.; Skaltsounis, A.-L. Two new peltogynoids
from Acacia nilotica Delile with kinase inhibitory activity. Planta Med.
2010, 76, 458−460.
(50 mL). The solid was collected by Buchner filtration and was
̈
purified by recrystallization from 95% EtOH to afford the
desired pure product 4{1,1}.
White solid. mp: >300 °C. 1H NMR (400 MHz, DMSO-d6)
(δ, ppm): 7.40 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H),
6.66 (s, 2H), 6.56 (s, 2H), 6.31 (s, 1H), 5.70 (t, J = 6.0 Hz,
1H), 5.30 (s, 1H), 4.31−4.19 (m, 2H). 13C NMR (100 MHz,
DMSO-d6) (δ, ppm): 170.6, 168.3, 160.4, 158.2, 157.5, 149.8,
139.8, 137.2, 132.8, 130.1, 129.2, 116.6, 111.8, 88.4, 71.4, 59.7,
37.9. IR (KBr, ν, cm−1): 3546, 3462, 3368, 3181, 2361, 2343,
2215, 1671, 1626, 1594, 1570, 1524, 1483, 1444, 1402, 1269,
1206. HRMS (ESI): m/z calcd for C19H12ClN4O4, 395.3547,
[M − H]−, found 395.0535.
(4) (a) Malan, E.; Roux, D. G. Flavonoids from Distemonanthus
benthamianus Baillon. methoxylated flavones and interrelations of
benthamianin, a [2]benzopyrano[4,3-b][1]benzopyran. J. Chem. Soc.,
Perkin Trans. 1 1979, 2696−2703. (b) King, F. E.; King, T. J.; Stokes,
P. J. The chemistry of extractives from hardwoods. XX. Distemonan-
thin, A new type of flavone pigment from Distemonanthus
benthamianus. J. Chem. Soc. 1954, 4594−4600. (c) Gottlieb, O. R.;
Rego de Sousa, J. Chemistry of Brazilian Leguminosae. XXXVII.
Peltogynoids of Goniorrhachis marginata. Phytochemistry 1972, 11,
2841−2846.
(5) Ganapaty, S.; Srilakshmi, G. V. K.; Thomas, P. S.; Rajeswari, N.
R.; Ramakrishna, S. Cytotoxicity and antiprotozoal activity of
flavonoids from three Tephrosia species. J. Nat. Remed. 2009, 9,
202−208.
(6) Gao, S.; Feng, N.; Yu, S.; Yu, D.; Wang, X. Vasodilator
constituents from the roots of Lysidice rhodostega. Planta Med. 2004,
70, 1128−1134.
(7) Koysomboon, S.; Van Altena, I.; Kato, S.; Chantrapromma, K.
Antimycobacterial flavonoids from Derris indica. Phytochemistry 2006,
67, 1034−1040.
ASSOCIATED CONTENT
* Supporting Information
Further details on the experimental procedures and results.
This material is available free of charge via the Internet at
■
S
AUTHOR INFORMATION
Corresponding Authors
*Tel.: 0086-516-83500065. Fax: 0086-516-83500065. E-mail:
Notes
The authors declare no competing financial interest.
■
ACKNOWLEDGMENTS
We are grateful to financial support from the National Science
Foundation of China (No. 21232004 and 21102124), PAPD of
■
D
dx.doi.org/10.1021/co500100c | ACS Comb. Sci. XXXX, XXX, XXX−XXX