10.1002/anie.202002328
Angewandte Chemie International Edition
COMMUNICATION
Himeno, Biorg. Med. Chem. 2006, 14, 8259–8270; c) I. Bonnard, M.
Rolland, J.-M. Salmon, E. Debiton, C. Barthomeuf, B. Banaigs, J. Med.
Chem. 2007, 50, 1266–1279; d) S. Luo, H.-S. Kang, A. Krunic, W.-L.
Chen, J. Yang, J. L. Woodard, J. R. Fuchs, S. Hyun Cho, S. G. Franzblau,
S. M. Swanson, J. Orjala, Biorg. Med. Chem. 2015, 23, 3153–3162; e)
C. Lu, F. Xie, C. Shan, Y. Shen, Appl. Microbiol. Biotechnol. 2017, 101,
2273–2279; f) W. Cai, S. Matthew, Q.-Y. Chen, V. J. Paul, H. Luesch,
Biorg. Med. Chem. 2018, 26, 2310–2319; g) L. Bornancin, E. Alonso, R.
Alvariño, N. Inguimbert, I. Bonnard, L. M. Botana, B. Banaigs, Biorg. Med.
Chem. 2019, 27, 1966–1980.
be readily applicable to vioprolides A-C by altering the individual
Northern and Southern fragments. In addition, we hope to aid
target identification and to further interrogate the mode of action
by the preparation of synthetic vioprolide analogues.
Acknowledgements
We are grateful to Prof. Dr. R. Müller for providing reference NMR
spectra of vioprolide D. We kindly thank Dr. G. Gemmecker, C.
Schwarz, and T. Steiner for measuring high- and low-temperature
NMR spectra. O. Ackermann is acknowledged for his help with
HPLC purification.
[11] For general reviews on dehydrobutyrines, see: a) D. Siodlak, Amino
Acids 2015, 47, 1–17; b) T. Kuranaga, Y. Sesoko, M. Inoue, Nat. Prod.
Rep. 2014, 31, 514–532; c) U. Kazmaier in Amino Acids, Peptides and
Proteins in Organic Chemistry, Vol. 2 (Ed.: A. B. Hughes), Wiley-VCH,
Weinheim, 2009, pp. 1–34; d) C. Bonauer, T. Walenzyk, B. König,
Synthesis 2006, 1–20; e) P. Mathur, S. Ramakumar, V. S. Chauhan,
Peptide Science 2004, 76, 150–161; f) U. Schmidt, A. Lieberknecht, J.
Wild, Synthesis 1988, 159–172.
Keywords: antitumor agents • isomerization • macrocycles •
peptides • total synthesis
[12] J. Deeley, A. Bertram, G. Pattenden, Org. Biomol. Chem. 2008, 6, 1994–
2010.
[1]
[2]
D. Schummer, E. Forche, V. Wray, T. Domke, H. Reichenbach, G. Höfle,
Liebigs Ann. 1996, 971–978. Cytotoxic activity against mammalian cells
was provided as LD50 = 200 ng mL1 for vioprolide D and as LD50 = 2-30
ng mL1 for vioprolides A-C. The higher antifungal activity of vioprolide D
was mentioned but not quantified. For more recent data on the cyto-
[13] a) M. A. Shalaby, C. W. Grote, H. Rapoport, J. Org. Chem. 1996, 61,
9045–9048; b) B. McKeever, G. Pattenden, Tetrahedron 2003, 59,
2701–2712.
[14] C.-g. Shin, Y. Yonezawa, M. Takahashi, J. Yoshimura, Bull. Chem. Soc.
Jpn. 1981, 54, 1132–1136.
toxicity, see ref.[9]
.
[15] M. Sakaitani, Y. Ohfune, J. Org. Chem. 1990, 55, 870–876.
[16] a) L. A. Carpino, J. Am. Chem. Soc. 1993, 115, 4397–4398; b) L. A.
Carpino, A. El-Faham, J. Org. Chem. 1994, 59, 695–698; c) L. A. Carpino,
A. El-Faham, F. Albericio, J. Org. Chem. 1995, 60, 3561–3564.
[17] R. M. Freidinger, J. S. Hinkle, D. S. Perlow, J. Org. Chem. 1983, 48, 77–
81.
For reviews on depsipeptides,see: a) X. Wang, X. Gong, P. Li, D. Lai, L.
Zhou, Molecules 2018, 23, 169; b) J. Kitagaki, G. Shi, S. Miyauchi, S.
Murakami, Y. Yang, Anti-Cancer Drugs 2015, 26, 259–271; c) S.
Sivanathan, J. Scherkenbeck, Molecules 2014, 19, 12368–12420; d) S.
C. Stolze, M. Kaiser, Molecules 2013, 18, 1337–1367; e) S. C. Stolze, M.
Kaiser, Synthesis 2012, 44, 1755–1777; f) G.-M. Suarez-Jimenez, A.
Burgos-Hernandez, J.-M. Ezquerra-Brauer, Mar. Drugs 2012, 10, 963–
986.
[18] C. L. Lencina, A. Dassonville-Klimpt, P. Sonnet, Tetrahedron: Asym-
metry 2008, 19, 1689–1697.
[19] a) A. Andrus, B. Partridge, J. V. Heck, B. G. Christensen, Tetrahedron
Lett. 1984, 25, 911–914; b) J. C. Muir, G. Pattenden, R. M. Thomas,
Synthesis 1998, 613–618.
[3]
[4]
[5]
a) F. Yan, D. Auerbach, Y. Chai, L. Keller, Q. Tu, S. Hüttel, A. Glemser,
H. A. Grab, T. Bach, Y. Zhang, R. Müller, Angew. Chem. Int. Ed. 2018,
57, 8754–8759; Angew. Chem. 2018, 130, 8890–8895; b) D. Auerbach,
F. Yan, Y. Zhang, R. Müller, ACS Chem. Biol. 2018, 13, 3123–3130; c)
F. Yan, R. Müller, ACS Chem. Biol. 2019, 14, 99–105.
[20] a) Y. Chen, M. Bilban, C. A. Foster, D. L. Boger, J. Am. Chem. Soc. 2002,
124, 5431–5440; b) J. Yao, H. Liu, T. Zhou, H. Chen, Z. Miao, G. Dong,
S. Wang, C. Sheng, W. Zhang, Tetrahedron 2012, 68, 3074–3085; c) P.
Barbie, U. Kazmaier, Org. Lett. 2016, 18, 204–207.
a) I. Grgurina, F. Mariotti, FEBS Lett. 1999, 462, 151–154; D. Herschlag,
Y. Goto, B. Li, J. Claesen, Y. Shi, M. J. Bibb, W. A. van der Donk, PLoS
Biol. 2010, 8, e1000339; c) Y. Goto, A. ꢀkesli, W. A. van der Donk,
Biochemistry 2011, 50, 891–898; d) J. Arp et al., Proc. Natl. Acad. Sci.
2018, 115, 3758–3763.
[21] a) B. F. Gisin, R. B. Merrifield, J. Am. Chem. Soc. 1972, 94, 3102–3106;
b) M. C. Khosla, R. R. Smeby, F. M. Bumpus, J. Am. Chem. Soc. 1972,
94, 4721–4724.
[22] K. C. Nicolaou, A. A. Estrada, M. Zak, S. H. Lee, B. S. Safina, Angew.
Chem. Int. Ed. 2005, 44, 1378–1382; Angew. Chem. 2005, 117, 1402–
1406.
For previous synthetic studies, see: a) N. Chopin, F. Couty, G. Evano,
Lett. Org. Chem. 2010, 7, 353–359; b) H. Liu, E. J. Thomas, Tetrahedron
Lett. 2013, 54, 3150–3153; c) E. Butler, L. Florentino, D. Cornut, G.
Gomez-Campillos, H. Liu, A. C. Regan, E. J. Thomas, Org. Biomol.
Chem. 2018, 16, 6935–6960.
[23] For a late-stage introduction of the thiazoline ring, see: H. Liu, Y. Liu Z.
Wang, X, Xing, A, R. Maguire, H. Luesch, H. Zhang, Z. Xu, T. Ye, Chem.
Eur. J. 2013, 19, 6774–6784.
[6]
[7]
a) P. Wipf, P. C. Fritch, Tetrahedron Lett. 1994, 35, 5397–5400; b) C. D.
J. Boden, G. Pattenden, T. Ye, Synlett 1995, 417–419; c) P. Wipf, P. C.
Fritch, J. Am. Chem. Soc. 1996, 118, 12358–12367; d) B. McKeever, G.
Pattenden, Tetrahedron 2003, 59, 2713–2727.
[24] a) R. S. Hoerrner, D. Askin, R. P. Volante, P. J. Reider, Tetrahedron Lett.
1998, 39, 3455–3458; b) G. J. Roff, R. C. Lloyd, N. J. Turner, J. Am.
Chem. Soc. 2004, 126, 4098–4099; c) P. M. T. Ferreira, L. S. Monteiro,
G. Pereira, Eur. J. Org. Chem. 2008, 4676–4683; d) P. M. T. Ferreira, L.
S. Monteiro, G. Pereira, Amino Acids 2010, 39, 499–513; e) Y. Yasuno,
A. Nishimura, Y. Yasukawa, Y. Karita, Y. Ohfune, T. Shinada, Chem.
Commun. 2016, 52, 1478–1481.
For the synthesis of natural products containing an E-Dhb peptide
linkage: a) D. E. Ward, A. Vázquez, M. S. C. Pedras, J. Org. Chem. 1999,
64, 1657–1666; b) S. Liang, Z. Xu, T. Ye, Chem. Commun. 2010, 46,
153–155; c) T. Yamashita, T. Kuranaga, M. Inoue, Org. Lett. 2015, 17,
2170–2173.
[25] Mechanistic analogy: a) A. P. Combs, R. W. Armstrong, Tetrahedron Lett.
1992, 33, 6419–6422; b) R. S. Coleman, A. J. Carpenter J. Org. Chem.
1993, 58, 4452–4461.
[8]
[9]
Y. Zhu, M. D. Gieselman, H. Zhou, O. Averin, W. A. van der Donk, Org.
Biomol. Chem. 2003, 1, 3304–3315.
[26] a) S. M. Kupchan, A. Afonso, J. Org. Chem. 1960, 25, 2217–2218; b) A.
P. Kozikowski, K. Sugiyama, Tetrahedron Lett. 1980, 21, 4597–4600; c)
D. R. Boyd, N. D. Sharma, J. F. Malone, C. C. R. Allen, Chem. Commun.
2009, 3633–3635; d) S. Hanessian, G. Huang, C. Chenel, R. Machaalani,
O. Loiseleur, J. Org. Chem. 2005, 70, 6721–6734.
V. C. Kirsch, C. Orgler, S. Braig, I. Jeremias, D. Auerbach, R. Müller, A.
M. Vollmar, S. A. Sieber, Angew. Chem. Int. Ed. 2020, 59, 1595–1600;
Angew. Chem. 2020, 132, 1611–1617.
[10] For naturally occurring E-Dhb with a C-terminal peptide bond to prolines,
see: a) J. B. MacMillan, M. A. Ernst-Russell, J. S. de Ropp, T. F. Molinski,
J. Org. Chem. 2002, 67, 8210–8215; b) M. Hashimoto, T. Murakami, K.
Funahashi, T. Tokunaga, K.-i. Nihei, T. Okuno, T. Kimura, H. Naoki, H.
[27] T. Mosmann, J. Immunol. Methods 1983, 65, 55–63.
This article is protected by copyright. All rights reserved.