Bi et al.
FULL PAPER
ZnP-t-P(py)4, stacking on the GO surface due to π-π
interactions, has been revealed by AFM measurements.
FTIR, UV-vis absorption spectra confirm the non-
covalent functionalization of the GO. Raman spectral
measurements revealed the electronic structure of the
GO to be intact upon hybrid formation. In this donor-
acceptor nanohybrid, the fluorescence of photoexcited
ZnP-t-P(py)4 is effectively quenched by a possible elec-
tron-transfer process. Fluorescent and photoelectrical
response measurements also reveal that this hybrid may
act as an efficient photoelectric conversion material for
optoelectronic applications.
Figure 6 The typical photoelectrical response of the ZnP-t-
P(py)4/GO film on ITO substrate under white light illumination at
an applied potential of -0.4 V (solution: H2O of 0.1 mol/L AA
and 0.1 mol/L PBS, pH=7.4).
References
[1] Li, D.; Kaner, R. B. Science 2008, 320, 1170.
[2] Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett,
G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Nature 2007,
448, 457.
[3] Bunch, J. S.; vander Zande, A. M.; Verbridge, S. S.; Frank, I. W.;
Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; Mceuen, P. L.
Science 2007, 315, 490.
photocurrent[16] under illumination. Thus, this hybrid
can act as the photoelectric conversion material for
optoelectronic applications.
The mechanism of photocurrent generation by
ZnP-t-P(py)4 was speculated using a mono-layer as a
model (Scheme 3). When ZnP-t-P(py)4 absorbs photons
with energies higher than its band gap, electrons are
excited from the (occupied) valence band to the (empty)
conduction band, forming the electron-hole pairs. The
electron transfers to the GO electrode and generates
photocurrent because the energy level of the ZnP-t-
P(py)4 is higher than the conduction-band of GO.[34a]
The injection of the conduction-band electrons into the
electrode yields the photo-current, whereas the electron
donor (ascorbic acid, AA) provides the electrons to the
valence-band holes, thus complete the photo-current
generation cycle.[34b]
[4] Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
[5] (a) Xu, Y. F.; Liu, Z. B.; Zhang, X. L.; Wang, Y.; Tian, J. G.; Huang,
Y.; Ma, Y. F.; Zhang, X. Y.; Chen, Y. S. Adv. Mater. 2009, 21, 1275;
(b) Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung, I.;
Dommett, G. H. B.; Evmenenko, G.; Wu, S. E.; Chen, S. F.; Liu, C.
P.; Nguyen, S. T.; Ruoff, R. S. Nano Lett. 2007, 7, 1888.
[6] Liu, Q.; Liu, Z. F.; Zhang, X. Y.; Yang, L.; Zhang, Y. N.; Pan, G.;
Yin, S. G.; Chen, Y. S.; Wei, J. Adv. Funct. Mater. 2009, 19, 894.
[7] Wang, X.; Zhi, L. J.; Mllen, K. Nano Lett. 2008, 8, 323.
[8] Liu, Z. F.; Liu, Q.; Huang, Y.; Ma, Y. F.; Yin, S. G.; Zhang, X. Y.;
Sun, W.; Chen, Y. S. Adv. Mater. 2008, 20, 3924.
[9] (a) Lu, C. H.; Yang, H. H.; Zhu, C. L.; Chen, X.; Chen, G. N. Angew.
Chem. 2009, 121, 4879; (b) Lu, C. H.; Yang, H. H.; Zhu, C. L.; Chen,
X.; Chen, G. N. Angew. Chem., Int. Ed. 2009, 48, 4785.
[10] He, S. J.; Song, B.; Li, D.; Zhu, C. F.; Qi, W. P.; Wen, Y. Q.; Wang,
L. H.; Song, S. P.; Fang, H. P.; Fan, C. H. Adv. Funct. Mater. 2010,
20, 453.
Scheme 3 Photocurrent generation mechanism of a graphene
[11] Mohanty, N.; Berry, V. Nano Lett. 2008, 8, 4469.
[12] Paredes, J. I.; Villar-Rodil, S.; Marticnez-Alonso, A.; Tascocn, J. M.
D. Langmuir 2008, 24, 10560.
oxide and ZnP-t-P(py)4 monolayer
[13] Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.;
Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S.
Nature 2006, 442, 282.
[14] Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Klein-
hammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon
2007, 45, 1558.
[15] Liu, Z. F.; Liu, Q.; Huang, Y.; Ma, Y. F.; Yin, S. G.; Zhang, X. Y.;
Sun, W.; Chen, Y. S. Adv Mater. 2008, 20, 3924.
[16] Zhang, X. Q.; Feng, Y. Y.; Tang, S. D.; Feng, W. Carbon 2010, 48,
211.
[17] Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
[18] Becerril, H. A.; Mao, J.; Liu, Z. F.; Stoltenberg, R. M.; Bao, Z. N.;
Chen, Y. S. ACS Nano 2008, 2, 463.
[19] Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.;
Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Chem. Mater.
1999, 11, 771.
[20] Gilje, S.; Han, S.; Wang, M. S.; Wang, K. L.; Kaner, R. B. Nano Lett.
2007, 7, 3394.
[21] Lindsey, J. S.; MacCrum, K. A.; Tyhonas, J. S.; Chuang, Y. Y. J.
Org. Chem. 1994, 59, 579.
[22] Ruaudel-Teixier, A.; Barraud, A.; Belbeoch, B.; Rouillay, M. Thin
Solid Films 1983, 99, 33.
[23] Liu, H. G.; Qian, D. J.; Feng, X. S.; Xue, Q. B.; Yang, K. Z. Lang-
Conclusions
In summary, we have designed a new ZnP-t-P(py)4/
GO hybrid material via non-covalent interactions. The
ZnP-t-P(py)4, along with four pendant pyrene entities
6
© 2012 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2012, XX, 1—7