Please do not adjust margins
New Journal of Chemistry
Page 10 of 12
ARTICLE
Journal Name
1
2
3
4
5
6
7
8
9
16 Y. Xu, S. Jin, H. Xu, A. Nagai and D. Jiang, Conjugated 31 N. Popp, T. Homburg, N. Stock and J. Senker, Porous imine-
microporous polymers: design, synthesis and application.
Chem. Soc. Rev., 2013, 42, 8012.
dioxide separation from mixtures withDnOitIr:o10g.e1n03a9n/Dd0mNJe0t1h2a9n2eK.
17 S. Wang, Y. Liu, Y. Ye, X. Meng, J. Du, X. Song and Z. Liang,
J. Mater. Chem. A. 2015, 3, 18492–18504.
Ultrahigh volatile iodine capture by conjugated microporous 32 (a) A. F. M. EL-Mahdy, C. Young, J. Kim, J. You, Y. Yamauchi
polymer
based
on
N,N,N’,N’-tetraphenyl-1,4-
Interfaces, 2019, 11, 9343-9354. (b) Z. Liang, R. Zhao, T. Qiu,
R. Zou AND Q. Xu, Metal- organic framework- derived
materials for electrochemical energy applications.
phenylenediamine. Polym. Chem., 2019, 10, 2608–2615.
18 Q. Sun, Z. F. Dai, X. J. Meng and F. S. Xiao, Porous polymer
catalysts with hierarchical structures. Chem. Soc. Rev., 2015,
44, 6018–6034.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
19 Y. Xu, N. Mao, C. Zhang, X. Wang, J. Zeng, Y. Chen, F. Wang
and J. X. Jiang, Rational design of donor-π-acceptor
EnergyChem 2019, 1, 100001-100032.
conjugated microporous polymers for photocatalytic 33 (a) A. F. M. EL-Mahdy, C. H. Kuo, A. Alshehri, C. Young, Y.
hydrogen production. Appl. Catal., B., 2018, 228, 1–9.
20 W. K. Meng, L. Liu, X. Wang, R. S. Zhao, M. L. Wang and J. M.
Lin, Polyphenylene core-conjugated microporous polymer
coating for highly sensitive solid-phase microextraction of
polar phenol compounds in water samples. Anal. Chim. Acta,
2018, 1015, 27–34.
storage. J. Mater. Chem. A, 2018, 6, 19532-19541. (b) X. C. Li,
Y. Zhang, C. Y. Wang, Y. Wan, W. Y. Lai, H. Pang and W.
Huang, Redox-active triazatruxene-based conjugated
microporous polymers for high-performance supercapacitors.
21 S. Dutta, A. Bhaumik and K. C. W. Wu, hierarchically porous
carbon derived from polymers and biomass: effect of
Chem. Sci., 2017, 8, 2959-2965.
interconnected pores on energy applications. Energy Environ. 34 C. Li, P. Li, L. Chen, M. E. Briggs, M. Liu , K. Chen, X. Shi, D.
Sci., 2014,
7
, 3574- 3592.
Han and S. Ren, Pyrene-Cored Covalent Organic Polymers by
Thiophene-Based Isomers, Their Gas Adsorption, and
Photophysical Properties. J. Polym. Sci., Part A: Polym. Chem.,
2017, 55, 2383–2389.
22 S. Xu, J. He, S. Jin and B. Tan, Heteroatom-rich porous
organic polymers constructed by benzoxazine linkage with
high carbon dioxide adsorption affinity. J. Colloid Interface
Sci., 2018, 509, 457-462.
35 Z. Xiang and D. Cao, Porous covalent–organic materials:
synthesis, clean energy application and design. J. Mater.
Chem. A., 2013, 1, 2691–2718.
24 A. F. M. EL-Mahdy, Y. H. Hung, T. H. Mansoure, H. H. Yu, Y. S.
Kaderi, Application of pyrene-derived benzimidazole-linked
polymers to CO2 separation under pressure and vacuum
swing adsorption settings. J. Mater. Chem. A., 2014,
2,
12492–12500.
Taiwan Inst. Chem. Eng., 2019, 103, 199-208.
25 Y. Zhao, N. Bu, H. Shao, Q. Zhang, B. Feng, Y. Xu, G. Zheng, Y.
Yuan, Z. Yan and L. Xi, A carbonized porous aromatic
tetranitrile to a porous covalent triazine-based framework
with high gas uptake capacities. Chem. Commun., 2013, 49,
3961–3963.
framework to achieve customized nitrogen atoms for 38 H. R. Abuzeid, A. F. M. EL-Mahdy, M. M. M. Ahmed and S. W.
enhanced supercapacitor performance. New J. Chem., 2019,
43, 18158-18164.
Kuo,
Triazine-functionalized
covalent
benzoxazine
framework for direct synthesis of N-doped microporous
26 H. Wang, Z. Cheng, Y. Liao, J. Li, J. Weber, A. Thomas and C. F.
carbon. Polym. Chem., 2019, 10, 6010-6020
J. Faul, Conjugated Microporous Polycarbazole Networks as 39 P. Kuhn, A. Forget, J. Hartmann, A. Thomas and M. Antonietti,
Precursors for Nitrogen-Enriched Microporous Carbons for
CO2 Storage and Electrochemical Capacitors. Chem. Mate.,
2017, 29, 4885−4893.
Template-Free Tuning of Nanopores in Carbonaceous
Polymers through Ionothermal Synthesis. Adv. Mater., 2009,
21, 897.
27 (a) A. F. M. EL-Mahdy, M. G. Mohamed, T. H. Mansoure, H. H. 40 P. Kuhn, M. Antonietti and A. Thomas, Porous, Covalent
Yu, T. Chen and S. W. Kuo, Ultrastable tetraphenyl-p-
phenylenediamine-based covalent organic frameworks as
Triazine-Based Frameworks Prepared by Ionothermal
Synthesis. Angew. Chem., Int. Ed., 2008, 47, 3450.
platforms
for
high-performance
electrochemical 41 T. Xu, Y. Li, Z. Zhao, G. Xing and L. Chen, N,N’‑Bicarbazole-
supercapacitors. Chem. Commun., 2019, 55, 14890-14893. (b)
Based Covalent Triazine Frameworks as High-Performance
X. Li, X. Yang, H. Xue, H. Xue, H. Pang and Q. Xu, Metal–
Heterogeneous Photocatalysts. Macromolecules, 2019, 52,
organic frameworks as
applications. EnergyChem, 2020,
28 M. G. Mohamed, A. F. M. EL Mahdy, M. M. M. Ahmed and S.
W. Kuo, Direct Synthesis of Microporous Bicarbazole Based
Covalent Triazine Frameworks for High
a
platform for clean energy
9786−9791.
2
, 100027-100055.
42 J. Guo, L. Wang and J. Huang, Porphyrin-Based Triazine
Polymers and Their Derived Porous Carbons for Efficient CO2
Capture. Ind. Eng. Chem. Res.,2020, 59, 7, 3205-3212.
‐
‐
‐
Performance Energy 43 A. F. M. El‐Mahdy, Y. H. Hung, T. H. Mansoure, H. H. Yu, T.
Storage and Carbon Dioxide Uptake. ChemPlusChem, 2019,
84, 1767-1774.
29 M. G. Rabbani, A. K. Sekizkardes, O. M. El-Kadri, B. R.
Kaafarani and H. M. El-Kaderi, Pyrene-directed growth of
nanoporous benzimidazole-linked nanofibers and their
application to selective CO2 capture and separation. J. Mater. 44 W. Yu, S. Gu, Y. Fu, S. Xiong, C. Pan, Y. Liu and G. Yu,
Chem., 2012, 22, 25409–25417.
30 Q. Chen, M. Luo, P. Hammershøj, D. Zhou, Y. Han, B. W.
Laursen, C. G. Yan and B. H. Han, Microporous Polycarbazole
Chen and S. W. Kuo, A Hollow Microtubular Triazine- and
Benzobisoxazole-Based Covalent Organic Framework
Presenting Sponge-Like Shells That Functions as a High-
Performance Supercapacitor. Chem. Asian J., 2019, 14, 1429-
1435.
Carbazole-decorated covalent triazine frameworks: Novel
nonmetal catalysts for carbon dioxide fixation and oxygen
reduction reaction. J. Catal., 2018, 362, 1-9.
with High Specific Surface Area for Gas Storage and 45 L. Guo, Y. Niu, H. Xu, Q. Li, S. Razzaque, Q. Huang, S. Jin and B.
Separation. J. Am. Chem. Soc., 2012, 134, 6084–6087.
Tan, Engineering heteroatoms with atomic precision in
10 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins