LETTER
Epoxidation of a,b-Unsaturated Ketones
2757
(10) For leading examples, see: Iskara, J.; Bonnet-Delpon, D.;
Begue, J. P. Tetrahedron Lett. 2003, 44, 6309.
(11) Tsuchiya, K.; Hamada, Y.; Masuyama, A.; Nojima, M.;
McCullough, K. J.; Kim, H.-S.; Shibata, Y.; Wataya, Y.
Tetrahedron Lett. 1999, 40, 4077.
(12) Selvam, J. J. P.; Suresh, V.; Rajesh, K.; Rabu, D. C.;
Suryakiran, N.; Venkateswalu, Y. Tetrahedron Lett. 2008,
49, 3463.
(13) Zheng, Y.-J.; Bruice, T. C. Bioorg. Chem. 1997, 25, 331.
(14) Merényi, G.; Lind, J. J. Am. Chem. Soc. 1991, 113, 3146.
(15) Miller, A. E.; Bischoff, J. J.; Bizub, C.; Luminoso, P.;
Smiley, S. J. Am. Chem. Soc. 1986, 108, 7773.
(16) Doerge, D. R.; Corbett, M. D. Mol. Pharmacol. 1984, 26,
348.
(17) Oae, S.; Asada, K.; Yoshimura, T. Tetrahedron Lett. 1983,
24, 1265.
(18) Bruice, T. C.; Noar, J. B.; Ball, S. S.; Venkataram, U. V.
J. Am. Chem. Soc. 1983, 105, 2452.
(19) Ball, S.; Bruice, T. C. J. Am. Chem. Soc. 1981, 103, 5494;
and references cited therein.
this scheme, the reaction likely takes place preliminary
with in situ generation of hydroperoxide anion in two suc-
cessive steps upon the effect of KOH on trans-3,5-dihy-
droperoxy-3,5-dimethyl-1,2-dioxolane (1). Subsequently,
the nucleophilic addition of the hydroperoxide anion to
the b-carbon of the trans-chalcone takes place to yield the
intermediate anion A, which then stereochemically under-
goes an SN2-like cyclization by pushing out the hydroxide
ion. This is consistent with the observed stereoselectivity
of the reactions in only affording trans-epoxide 3.
HOO–
OH–
OH–
HO
O
O
O
OH–
O
O
H
O
O OH
HOO
– H2O2
1
HOO
H
O
O
O
Ar1
HO
Ar1
H
O
(20) Kośnik, W.; Bocian, W.; Kozerski, L.; Tvaroška, I.;
Chmielewski, M. Chem. Eur. J. 2008, 14, 6087.
(21) Azarifar, D.; Khosravi, K. Eur. J. Chem. 2010, 15.
(22) Bez, G.; Zhao, C.-G. Tetrahedron Lett. 2003, 44, 7403.
(23) Adam, W.; Saha-Möller, C. R.; Zhao, C.-G. Tetrahedron:
Asymmetry 1999, 10, 2749.
HOO–
Ar2
Ar2
Ar2
– OH–
H
Ar1
H
O
(A)
H
2
3
Scheme 3
(24) Adam, W.; Saha-Möller, C. R.; Ganeshpure, P. A. Chem.
Rev. 2001, 101, 3499.
(25) Udin, A. K. Aziridines and Epoxides in Organic Synthesis;
Wiley-VCH: Weinheim, 2006.
(26) Rudolph, J.; Reddy, K. L.; Chiang, J. P.; Sharpless, K. B.
J. Am. Chem. Soc. 1997, 119, 6189.
(27) Li, Z.; Zhou, Z.; Li, K.; Wang, L.; Zhou, Q.; Tang, C.
Tetrahedron Lett. 2002, 43, 7609.
(28) De Vos, D. E.; Sels, B. F.; Reynaers, M.; Rao, Y. V. S.;
Jacobs, P. A. Tetrahedron Lett. 1998, 39, 3221.
(29) Bonini, C.; Righi, G. Tetrahedron 2002, 58, 4981.
(30) Wong, E. In Chemistry and Biochemistry of Plants
Pigments; Goodwin, T. W., Ed.; Academic: New York,
1976.
In conclusion, trans-3,5-dihydroperoxy-3,5-dimethyl-
1,2-dioxolane (1) has been conveniently used as an effec-
tive and high-oxygen-content oxidant in epoxidation of
variously substituted trans-chalcones to corresponding
epoxides. The reactions proceed under mild conditions at
room temperature to afford the epoxides in excellent
yields. This protocol may be considered as environmen-
tally benign since no additional catalyst is necessary for
activation of the oxidant, and also the acetylacetone used
for preparation of the oxidant may be recovered after the
reaction.
(31) Dhar, D. N. The Chemistry of Chalcones and Related
Compounds; Wiley Interscience: New York, 1981.
(32) Bohm, B. A. In The Flavonoids: Advances in Research
Since 1980; Harborne, J. B., Ed.; Chapman and Hall:
London, 1988.
Acknowledgment
The authors are thankful to Buali Sina University research council
for the financial support.
(33) Roberts, S.; Skidmore, J. Chem. Ber. 2002, 31.
(34) Martinelli, M. J.; Peterson, B. C.; Khau, V. V.; Hutchison,
D. R.; Leana, M. R.; Audia, J. E.; Droste, J. J.; Wu, Y. D.;
Houk, K. N. J. Org. Chem. 1986, 51, 3098.
(35) Solladie, G. S.; Hutt, J. J. Org. Chem. 1987, 52, 3560.
(36) Hoeger, C. A.; Johnstone, A. D.; Okamura, W. H. J. Am.
Chem. Soc. 1987, 109, 4690.
(37) Baures, P. W.; Egglestone, D. S.; Flisak, J. R.; Gonbatz, K.;
Lantos, I.; Mendelson, W.; Remich, J. J. Tetrahedron Lett.
1990, 31, 6501.
References and Notes
(1) Jones, C. W. Application of Hydrogen Peroxide and
Derivatives; RSC: Cambridge, 1999.
(2) Sanchez, D. A. G. Synlett 2008, 1101.
(3) Grigoropoulou, G.; Clark, J. H.; Elings, J. A. Green Chem.
2003, 5, 1.
(4) Miranda, Les P.; Lubell, D. W.; Halkes, M. K.; Groth, T.;
Grotli, M.; Rademann, J.; Gotferdsen, C. H.; Meldal, M.
J. Comb. Chem. 2002, 4, 523.
(5) Cole, D. C.; Stock, J. R.; Kappel, J. A. Bioorg. Med. Chem.
Lett. 2002, 12, 1791.
(6) For reviews, see: Nardello, V.; Aubry, J.-M.; De Vos, D. E.;
Neumann, R.; Adam, W.; Zhang, R.; ten Elshof, J. E.; Witte,
P. T.; Alsters, P. L. J. Mol. Catal. A.: Chem. 2006, 251, 185.
(7) Lane, B. S.; Burgess, K. Chem. Rev. 2003, 103, 2457.
(8) Benjamin, S.; Lane, S. S.; Kevin, B. Chem. Rev. 2003, 103,
2457.
(9) For a review, see: Kratz, T.; Zeiss, W. In Peroxide
Chemistry; Adam, W., Ed.; Wiley-VCH: Weinheim, 2000,
41–59.
(38) Itsuno, S.; Sakaura, M.; Ito, K. J. Org. Chem. 1990, 55,
6047.
(39) Honma, T.; Nakajo, N.; Mizugaki, T.; Ebitani, K.; Kaneda,
K. Tetrahedron Lett. 2002, 43, 6229.
(40) Lakouraj, M. M.; Movassagh, B.; Bahrami, K. Synth.
Commun. 2001, 31, 1237.
(41) Miyashita, M.; Suzuki, T.; Yoshkoshi, A. Chem. Lett. 1987,
285.
(42) Straub, T. S. Tetrahedron Lett. 1995, 36, 663.
(43) Sharifi, A.; Bolourtchian, M.; Mohsenzadeh, F. J. Chem.
Res. 1998, 668.
Synlett 2010, No. 18, 2755–2758 © Thieme Stuttgart · New York