Mendeleev Commun., 2021, 31, 242–243
scientific activities (grant no. 0671-2020-0063). X-ray diffraction
study was supported from the government assignment for FRC
Kazan Scientific Centre of RAS.
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2021.03.032.
Figure 1 A fragment of crystal packing of (2-carboxyethyl)(carboxy-
methyl)diphenylphosphonium bromide 2a showing hydrogen bonds of
carboxy groups with bromine anions.
References
1 K. Tsunashima, A. Kawabata, M. Matsumiya, S. Kodama, R. Enomoto,
M. Sugiya and Y. Kunugi, Electrochem. Commun., 2011, 13, 178.
2 B. Yu, D. G. Bansal, J. Qu, X. Sun, H. Luo, S. Dai, P. J. Blau,
B. G. Bunting, G. Mordukhovich and D. J. Smolenski, Wear, 2012, 289,
58.
3 N. E. Leadbeater, Chem. Commun., 2014, 50, 1515.
4 M. Rzelewska-Piekut and M. Regel-Rosocka, Sep. Purif. Technol.,
2019, 212, 791.
investigated by single crystal X-ray diffraction.† Phosphonium
cations form one-dimensional hydrogen-bonded chains in which
carboxy groups interact with bromine anions (Figure 1).
The similar reactions of phosphino acid 1 with w-chloro-
alkanoic acids proceeded essentially slower. Only in the case of
3-chloropropanoic acid after 20
h of processeing the
corresponding phosphonium salt 2g was obtained in 65% yield
(see Scheme 1 and Table 1). In cases of higher w-chloroalkanoic
acids the reaction rate was even lower, and the corresponding
phosphine oxide was formed as the by-product. According to
31P NMR spectroscopy data, after heating the mixture of
phosphino acid 1 and 4-chlorobutyric acid for 45 h the conversion
of 1 approached 50% with the formation of phosphonium salt
(40%) and phosphine oxide (9%). In the case of 5-chlorovaleric
acid, 50 h processing provided only 20% conversion while the
ratio between the phosphonium salt and phosphine oxide was
1:1. After prolonged standing at room temperature for several
months, the percentage of reactant 1 in these reactions decreased
slightly. The 31P NMR monitoring of these processes is outlined
in Online Supplementary Materials (Figures S15 and S16).
Treatment of phosphonium salts 2a–f with 1 m alkali solution
gave the corresponding carboxylate phosphabetaines 3a–f (see
Scheme 1). The most informative method for carboxylate
phosphabetaines identification is IR spectroscopy. Medium
intensity bands in the region of 1335–1340 cm–1 correspond to
symmetric stretching vibrations in the carboxylate groups, and
bands in the region of 1553–1567 cm–1 are attributed to anti-
symmetric stretching vibrations in these groups. In this case, the
absorption band of the free carboxy group in the region of
1715–1740 cm–1 disappears.
5 T. Werner, Adv. Synth. Catal., 2009, 351, 1469.
6 N. D. Harper, N. D. Nizio,A. D. Hendsbee, J. D. Masuda, K. N. Robertson,
L. J. Murphy, M. B. Johonson, C. C. Pye and J. A. C. Clyburne,
Ind. Eng. Chem. Res., 2011, 50, 2822.
7 N. R. Khasiyatullina, V. F. Mironov, S. K. Gumerova, A. D. Voloshina
and A. S. Sapunova, Mendeleev Commun., 2019, 29, 435.
8 N. R. Khasiyatullina,A. M. Vazykhova, V. F. Mironov, D. B. Krivolapov,
Yu. K. Voronina, A. D. Voloshina, N. V. Kulik and A. S. Strobykina,
Mendeleev Commun., 2017, 27, 134.
9 S. Romanov, A. Aksunova, Y. Bakhtiyarova, M. Shulaeva, O. Pozdeev,
S. Egorova, I. Galkina and V. Galkin, J. Organomet. Chem., 2020, 910,
121130.
10 A. Yu. Spivak, D. A. Nedopekina, E. R. Shakurova, R. R. Khalitova,
R. R. Gubaidullin, V. N. Odinokov, U. M. Dzhemilev, Yu. P. Bel’skii,
N. V. Bel’skaya, S. A. Stankevich, E. V. Korotkaya and V. A. Khazanov,
Russ. Chem. Bull., Int. Ed., 2013, 62, 188 (Izv. Akad. Nauk, Ser. Khim.,
2013, 189).
11 D. A. Nedopekina, R. R. Gubaidullin, V. N. Odinokov, P. V. Maximchik,
B. Zhivotovsky, Y. P. Bel’skii, V. A. Khazanov, A. V. Manuylova,
V. Gogvadze and A. Yu. Spivak, MedChemComm, 2017, 8, 1934.
12 O. V. Tsepaeva, A. V. Nemtarev, T. I. Salikhova, T. I. Abdullin,
L. R. Grigor’eva, S. A. Khozyainova and V. F. Mironov,
Anti-Cancer Agents Med. Chem., 2020, 20, 286.
13 I. Galkina, A. Tufatullin, D. Krivolapov, Y. Bakhtiyarova,
D. Chubukaeva, V. Stakheev, V. Galkin, R. Cherkasov, B. Büchner and
O. Kataeva, CrystEngComm, 2014, 16, 9010.
14 I. Galkina, S. Romanov, A. Gerasimov, Y. Bakhtiyarova and V. Galkin,
J. Organomet. Chem., 2020, 910, 121131.
In conclusion, the nucleophilic substitution between
3-(diphenylphosphino)propanoic acid and w-bromoalkanoic
acids affords the corresponding phosphonium compounds in
high yields. The similar process involving chloroalkanoic acids
is slower and leads to the side formation of phosphine oxides.
The alkali treatment of the phosphonium salts gives the
corresponding carboxylate phosphabetaines.
15 D. Xu, H. Wei, Y. Zhen, Y.-Q. Gao, R. Li, X. Li, Y. He, Z. Zhang and
W. Xie, Org. Chem. Front., 2019, 6, 1681.
16 P. Tian, H. Xiao, L. Wang, Y. Yu and Y. Huang, Tetrahedron Lett., 2019,
60, 1015.
17 M. Irfan and A. Idris, Mater. Sci. Eng., 2015, 56, 574.
18 A. Mollahosseini, A. Abdelrasoulab and A. Shoker, Mater. Today
Chem., 2020, 15, 100227.
19 M. He, K. Gao, L. Zhou, Z. Jiao, M. Wu, J. Cao, X. You, Z. Cai, Y Su
and Z. Jiang, Acta Biomater., 2016, 40, 142.
20 Yu. V. Bakhtiyarova, A. F. Aksunova, R. R. Minnullin, I. V. Galkina and
V. I. Galkin, Russ. Chem. Bull., Int. Ed., 2016, 65, 1308 (Izv. Akad.
Nauk, Ser. Khim., 2016, 1308).
This study was supported by the Kazan Federal University
within the framework of the state assignment in the sphere of
21 Yu. V. Bakhtiyarova, A. F. Aksunova, S. R. Romanov, D. I. Bakhtiyarov,
K. A. Ivshin, O. N. Kataeva, S. N. Egorova, I. V. Galkina and
V. I. Galkin, Phosphorus, Sulfur Silicon Relat. Elem., 2019, 194, 319.
22 S. R. Romanov, A. F. Aksunova, D. R. Islamov, A. B. Dobrynin,
D. B. Krivolapov, O. N. Kataeva, Y. V. Bakhtiyarova, O. I. Gnezdilov,
I. V. Galkina and V. I. Galkin, Phosphorus, Sulfur Silicon Relat. Elem.,
2016, 191, 1637.
†
Crystal data for 2a. C17H18BrO4P, M = 397.19 g mol–1, triclinic, space
–
group P1(no. 2), Z = 2, a = 8.0672(5), b = 9.4323(6) and c = 12.7937(8) Å,
a = 88.123(3)°, b = 82.330(3)°, g = 65.723(3)°, V = 879.21(10) Å3,
rcalc = 1.500 g cm–3, μ = 2.445 mm–1, 42122 reflections collected
(–10 £ h £ 10, –12 £ k £ 12, –17 £ l £ 17), q range of 1.607° to
28.872°, 4578 independent (Rint = 0.0249) and 4437 observed reflections
[I ³ 2s(I)], 216 refined parameters, R1 = 0.0182, wR2 = 0.0472, GOOF
1.049, max(min). Residual electron density 0.362 (–0.482) eÅ–3. For
more details, see Online Supplementary Materials.
CCDC 2035123 contains the supplementary crystallographic data for
this paper. These data can be obtained free of charge from The Cambridge
Received: 26th October 2020; Com. 20/6347
– 243 –