Pentacoordinate C and B Compds w/ Anthracene Skeleton
A R T I C L E S
as the transition state of the solvent-exchange process of solvated
6a,b
carbocations. The transition-state structures of SN2 reactions
-
-
-
-
such as CH5 (a), CH3F2 (b), CF5 (c), CH3(OH)2 (d), CH3-
(
+
+
6
OH2)2 (e), and CMe3(OH2)2 (f) or solvent exchange SN2-
like processes of the solvated carbocations under SN1 conditions
are illustrated together with the ratio of the calculated apical
7
C-X distance to the sum of the covalent radii (Figure 1). All
2
of these imaginary molecules are built up from an sp carboca-
tion coordinated by two anionic nucleophiles (a-d) and by two
neutral nucleophiles (e, f). The two linear hypervalent apical
bonds are relatively long (dotted lines in Figure 1). The
2
elongation of apical bonds compared to sp equatorial bonds is
widely found in hypervalent compounds of main group elements
such as phosphorus, sulfur, silicon, and so forth. Based on
comparison of a, b, and d, it is seen that the apical bond
elongation should be related with the electronegativity and hence
the atomic radius of apical X. In the case of b and c, equatorial
fluorine atoms made the C-F apical bond shorter. In the case
of d, e, and f, the C-O bond in e and f was elongated in
comparison with d probably due to the decrease in nucleophi-
licity of the neutral nucleophiles (H2O) compared with the
Figure 1. Calculated hypervalent pentacoordinate carbon structures for
transition state of SN2.
hydroxide ion and to the presence of the cationic charge in e
and f. By comparison of e and f, it is apparent that the equatorial
methyl group elongates the apical C-O bond. Thus, theoretical
calculations have provided information about the structures of
pentacoordinate carbon species including substituent effects on
the structure.
(
2) agostic interaction or bridging alkyl groups: (a) Braunstein, P.; Boag, N.
M. Angew. Chem., Int. Ed. 2001, 40, 2427-2433 and references therein.
(
b) Boesveld, W. M.; Hitchcock, P. B.; Lappert, M. F.; Liu, D. S.; Tian, S.
However, there have been no reliable experimental investiga-
tions before us about the structural and bonding features of
pentacoordinate carbon species because of the difficulties in
synthesizing appropriate model compounds. In addition, there
have been only few examples of the theoretical investigation
about hypervalent pentacoordinate boron compounds which are
isoelectronic to carbocations. The hypervalent boron compound
was assumed as a transition state of the SN2-type reaction on
the central boron atom of a borane-carbon monooxide complex
Organometallics 2000, 19, 4030-4035. (c) McGrady, G. S.; Turner, J. F.
C.; Ibberson, R. M.; Prager, M. Organometallics 2000, 19, 4398-4401.
(
d) Klosin, J.; Roof, G. R.; Chen, E. Y.-X.; Abboud, K. A. Organometallics
2
000, 19, 4684-4686. (e) Yu, Z.; Wittbrodt, J. M.; Heeg, M. J.; Schlegel,
H. B.; Winter, C. H. J. Am. Chem. Soc. 2000, 122, 9338-9339. (f) Chen,
E. Y.-X.; Abboud, K. A. Organometallics 2000, 19, 5541-5543. (g) Vanka,
K.; Chan, M. S. W.; Pye, C. C.; Ziegler, T. Organometallics 2000, 19,
1
841-1849. (h) Chan, M. S. W.; Ziegler, T. Organometallics 2000, 19,
182-5189. (i) Schrock, R. R.; Casado, A. L.; Goodman, J. T.; Liang,
5
L.-C.; Bonitatebus, P. J., Jr.; Davis, W. M. Organometallics 2000, 19,
5
325-5341. (j) Duncan, A. P.; Mullins, S. M.; Arnold, J.; Bergman, R. G.
Organometallics 2001, 20, 1808-1819. (k) Schumann, H.; Keitsch, M.
R.; Demtschuk, J.; Molander, G. A. J. Organomet. Chem. 1999, 582, 70-
8
Y.-X.; Marks, T. J. Chem. ReV. 2000, 100, 1391-1434. (n) Song, X.;
Thornton-Pett, M.; Bochmann, M. Organometallics 1998, 17, 1004-1006.
2. (l) Schaverien, C. J. Organometallics 1994, 13, 69-82. (m) Chen, E.
8
with trimethylamine by the Grotewold group. In 1995, the Oki
group reported the direct observation of intramolecular SN2
(o) Kleinhenz, S.; Seppelt, K. Chem.sEur. J. 1999, 5, 3573-3580. (p)
displacement reactions using a 2,6-disubstituted benzene ligand.9
Kulzick, M. A.; Andersen, R. A.; Muetterties, E. L.; Day, V. W. J.
Organomet. Chem. 1987, 336, 221-236. (q) Schwartz, D. J.; Ball, G. E.;
Andersen, R. A. J. Am. Chem. Soc. 1995, 117, 6027-6040. (r) Shin, J. H.;
Parkin, G. Chem. Commun. 1998, 1273-1274. (s) Chan, M. C. W.; Cole,
J. M.; Gibson, V. C.; Howard, J. A. K. Chem. Commun. 1997, 2345-
However, the details of the structure and nature of the transition
state have never been studied after Grotewold’s assumption.
Some chemists have confronted the very difficult problem
of the synthesis of stabilized hypervalent carbon and boron
compounds. Breslow challenged the problem using trityl cation
derivatives bearing some o-methylthiomethyl substituents as
2
1
346. (t) Bursten, B. E.; Cayton, R. H. Organometallics 1986, 5, 1051-
053. (u) Ozawa, F.; Park, J. W.; Mackenzie, P. B.; Schaefer, W. P.;
Henling, L. M.; Grubbs, R. H. J. Am. Chem. Soc. 1989, 111, 1319-1327.
(v) Dawkins, G. M.; Green, M.; Orpen, A. G.; Stone, F. G. A. J. Chem.
Soc., Chem. Commun. 1982, 41-43. (w) Calvert, R. B.; Shapley, J. R. J.
Am. Chem. Soc. 1978, 100, 7726-7727. (x) Hamilton, D. H.; Shapley, J.
R. Organometallics 2000, 19, 761-769. (y) Schultz, A. J.; Williams, J.
M.; Calvert, R. B.; Shapley, J. R.; Stucky, G. D. Inorg. Chem. 1979, 18,
10
early as 1966. The compound came out as sulfonium salts,
and they could not find any positive evidence for the presence
of pentacoordinate carbon compounds. Martin and Basalay
3
19-323. (z) Dutta, T. K.; Vites, J. C.; Jacobsen, G. B.; Fehlner, T. P.
Organometallics 1987, 6, 842-847. (aa) Adams, R. D.; Horv a´ th, I. T. Prog.
Inorg. Chem. 1985, 33, 127-181.
attempted to stabilize the pentacoordinate carbon species by the
(
3) Carboranes: (a) Grimes, R. N. Carboranes; Academic Press: New York,
11
1
,8-bis(phenylthio)anthracenyl ligand. At room temperature,
1970. (b) Olah, G. A.; Wade, K.; Williams, R. E. Electron Deficient Boron
and Carbon Clusters; John Wiley & Sons: New York, 1991. (c) Kabalka,
G. W. Current Topics in the Chemistry of Boron; The Royal Society of
Chemistry: Cambridge, 1994. (d) Siebert, W. AdVances in Boron Chemistry;
The Royal Society of Chemistry: Cambridge, 1997. (e) King, R. B. Boron
Chemistry at the Millennium; Elsevier Science: Amsterdam, 1999. (f)
Davidson, M.; Hughes, A. K.; Marder, T. B.; Wade, K. Contemporary
Boron Chemistry; The Royal Society of Chemistry: Cambridge, 2000.
4) Metal cluster cage: Scherbaum, F.; Grohmann, A.; M u¨ ller, G.; Schmidbaur,
H. Angew. Chem., Int. Ed. Engl. 1989, 28, 463-465.
the peak of two methyl groups on the carbocation attached at
C-9 was observed as a singlet. When the temperature was
lowered, two singlet peaks of the two methyl groups were
observed because of the formation of a sulfonium salt, where
one of the phenylthio groups stays unaffected. They concluded
that the desired pentacoordinate carbon species should be the
transition state in the “bell-clapper” (bond-switching) rearrange-
(
(
5) (a) Musher, J. I. Angew. Chem., Int. Ed. Engl. 1969, 8, 54-68. (b) Akiba,
K.-y. Chemistry of HyperValent Compounds; Wiley-VCH: New York,
1
999.
(
6) (a) Yamabe, S.; Yamabe, E.; Minato, T. J. Chem. Soc., Perkin Trans. 2
(8) (a) Grotewold, J.; Lissi, E. A.; Villa, A. E. J. Chem. Soc. A 1966, 1034-
1037. (b) Grotewold, J.; Lissi, E. A.; Villa, A. E. J. Chem. Soc. A 1966,
1038-1041.
1
983, 1881-1884. (b) Ruggiero, G. D.; Williams, I. H. J. Chem. Soc.,
Perkin Trans. 2 2001, 448-458. (c) Carroll, M. T.; Gordon, M. S.; Windus,
T. L. Inorg. Chem. 1992, 31, 825-829. (d) Glukhovtsev, M. N.; Pross,
A.; Radom, L. J. Am. Chem. Soc. 1995, 117, 2024-2032. (e) Hiraoka, K.;
Nasu, M.; Fujimaki, S.; Ignacio, E. W.; Yamabe, S. Chem. Phys. Lett. 1995,
(9) Toyota, S.; Futawaka, T.; Ikeda, H.; Oki, M. J. Chem. Soc., Chem. Commun.
1995, 2499-2500.
(10) (a) Breslow, R.; Garratt, S.; Kaplan, L.; LaFollette, D. J. Am. Chem. Soc.
1968, 90, 4051-4055. (b) Breslow, R.; Kaplan, L.; LaFollette, D. J. Am.
Chem. Soc. 1968, 90, 4056-4064.
2
45, 14-18. (f) Raghavachari, K.; Chandrasekhar, J.; Burnier, R. C. J.
Am. Chem. Soc. 1984, 106, 3124-3128.
(7) Dean, J. A. Lange’s Handbook of Chemistry, 11th ed.; McGraw-Hill: New
York, 1973; pp 3-119-3-123.
(11) (a) Basalay, R. J.; Martin, J. C. J. Am. Chem. Soc. 1973, 95, 2565-2571.
(b) Martin, J. C.; Basalay, R. J. J. Am. Chem. Soc. 1973, 95, 2572-2578.
J. AM. CHEM. SOC.
9
VOL. 127, NO. 12, 2005 4355