S. Djakovic´, V. Vrcˇek et al.
FULL PAPER
ana-Douki, E. Mouray, T. Bousquet, S. Pellegrini, P. Grellier,
F. S. T. Ndouo, J. Lebibi, L. Pelinski, New J. Chem. 2011, 35,
2412–2415; c) S. I. Kirin, H.-B. Kraatz, N. Metzler-Nolte,
Chem. Soc. Rev. 2006, 35, 348–354; d) M. Patra, G. Gasser, M.
Wenzel, K. Merz, J. E. Bandow, N. Metzler-Nolte, Organome-
tallics 2010, 29, 4312–4319; e) J. Lapic´, S. Djakovic´, I. Kodrin,
Z. Mihalic´, M. Cetina, V. Rapic´, Eur. J. Org. Chem. 2010, 2512–
2524; f) B. Adhikari, R. Afrasiabi, H.-B. Kraatz, Organometal-
lics 2013, 32, 5899–5905; g) H.-B. Kraatz, J. Inorg. Organomet.
Polym. 2005, 15, 83–106; h) T. Moriuchi, T. Hirao, Acc. Chem.
Res. 2010, 43, 1040–1051.
a) A. N. Patwa, R. G. Gonnade, V. A. Kumar, M. M.
Bhadbhade, K. N. Ganesh, J. Org. Chem. 2010, 75, 8705–8708;
b) H. V. Nguyen, A. Sallustrau, J. Balzarini, M. R. Bedford,
J. C. Eden, N. Georgousi, N. J. Hodges, J. Kedge, Y. Mehellou,
C. Tselepis, J. H. R. Tucker, J. Med. Chem. 2014, 57, 5817–
5822; c) A. A. Simenel, G. A. Dokuchaeva, L. V. Snegur, A. N.
Rodionov, M. M. Ilyin, S. I. Zykova, L. A. Ostrovskaya, N. V.
Bluchterova, M. M. Fomina, V. A. Rikova, Appl. Organomet.
Chem. 2011, 25, 70–75; d) H. V. Nguyen, Z. Zhao, A. Sallus-
trau, S. L. Horswell, L. Male, A. Mulas, J. H. R. Tucker, Chem.
Commun. 2012, 48, 12165–12167; e) K. Kowalski, J. Skiba, L.
Oehninger, I. Ott, J. Solecka, A. Rajnisz, B. Therrien, Organo-
metallics 2013, 32, 5766–5773; f) A. Houlton, C. J. Isaac, A. E.
Gibson, B. R. Horrocks, W. Clegg, M. R. J. Elsegood, J. Chem.
Soc., Dalton Trans. 1999, 3229–3234; g) P. Brázdilová, M.
Vrábel, R. Pohl, H. Pivonˇková, L. Havran, M. Hocek, M.
Fojta, Chem. Eur. J. 2007, 13, 9527–9533.
D. B. Longley, D. P. Harkin, P. G. Johnston, Nature Rev. 2003,
3, 330–338.
M. A. Kurinovich, J. K. Lee, J. Am. Chem. Soc. 2000, 122,
6258–6262.
A. Zhachkina, J. K. Lee, J. Am. Chem. Soc. 2009, 131, 18376–
18385.
V. Verdolino, R. Cammi, B. H. Munk, H. B. Schlegel, J. Phys.
Chem. B 2008, 112, 16860–16873.
J. M. Fox, O. Dmitrenko, L. Liao, R. D. Bach, J. Org. Chem.
2004, 69, 7317–7328.
T. W. Bentley, G. Llewellyn, J. A. McAlister, J. Org. Chem.
1996, 61, 7927–7932.
F. Ruff, O. Farkas, J. Phys. Org. Chem. 2011, 24, 480–491.
J. March, in: Advanced Organic Chemistry, 4th ed.; Wiley: New
York, 1992, p. 330–335.
K. A. Cruickshank, J. Jiricny, C. B. Reese, Tetrahedron Lett.
1984, 25, 681–684.
M. N. S. Rad, S. Behrouz, Z. Asrari, A. Khalafi-Nezhad,
Monatsh. Chem. 2014, 145, 1933–1940.
S. A. Lahsasni, Nucleosides Nucleotides Nucleic Acids 2013, 32,
439–452.
T. Kametani, K. Kigasawa, M. Hiiragi, K. Wakisaka, S. Haga,
Y. Nagamatsu, H. Sugi, K. Fukawa, O. Irino, J. Med. Chem.
1980, 23, 1324–1329.
FcCOOCOOEt in selected cases) was added dropwise to the clear
solution. The mixture was stirred for 10–30 min and then neutral-
ized with 10% aqueous solution of citric acid and extracted with
CH2Cl2. The organic layer was washed with water and the solvents
were evaporated under vacuum. Subsequent purification by column
chromatography afforded N1-ferrocenoylated pyrimidine bases.
N1-Ferrocenoyluracil (2N1, R = H): Red-orange crystals (269.6 mg,
64.6% yield); m.p. Ͼ 200 °C. C15H12FeN2O3 (324.112): calcd. C
55.59, H 3.73, O 14.81, N 8.64; found C 55.61, H 3.75, O 14.84, N
8.67. IR (CH Cl ): ν = 3374 (w, NH), 3099 (w, CH, Fc), 1700 (s,
˜
2
2
[2]
C=O), 1633 (w, C=O) cm–1. 1H NMR (400 MHz, [D6]DMSO,
3
25 °C): δ = 11.5 (s, 1 H, N3-H), 8.0 (d, JH,H = 8.0 Hz, 1 H, C6-
3
3
H), 5.7 (d, JH,H = 8.0 Hz, 1 H, C5-H), 4.9 (t, JH,H = 2.0 Hz, 2
3
H, H-βЈ), 4.7 (t, JH,H = 2.0 Hz, 2 H, H-αЈ), 4.3 (s, 5 H, Cp) ppm.
13C NMR (100 MHz, [D6]DMSO, 25 °C): δ = 173.6 (FcCO), 163.8
(C4), 149.9 (C2), 141.3 (C6), 102.9 (C5), 74.1 (C-αЈ), 72.6 (Ci), 71.9
(C-βЈ), 71.1 (Cp) ppm. HRMS (MALDI-TOF/TOF): m/z calcd. for
C15H12O3N2Fe [M + H]+ 325.1203; found 325.1205.
N1-Ferrocenoylthymine (2N1, R = Me): Orange crystals (245.79 mg,
72.7% yield); m.p. Ͼ 200 °C. C16H14FeN2O3 (338.139): calcd. C
56.83, H 4.17, O 14.19, N 8.28; found C 56.85, H 4.18, O 14.21, N
8.29. IR (CH Cl ): ν = 3375 (w, NH), 2927 (w, CH, Fc), 1730 (s,
˜
2
2
C=O), 1700 (s, C=O) cm–1. 1H NMR (400 MHz, [D6]DMSO,
4
25 °C): δ = 11.5 (s, 1 H, N3-H), 7.9 (q, JH,H = 1.3 Hz, 1 H, C6-
3
3
H), 4.8 (t, JH,H = 2.2 Hz, 2 H, H-αЈ), 4.7 (t, JH,H = 2.2 Hz, 2 H,
[3]
[4]
[5]
[6]
[7]
[8]
H-βЈ), 4.3 (s, 5 H, Cp), 1.8 (d, 4JH,H = 1.3 Hz, 3 H, CH3) ppm. 13
C
NMR (100 MHz, [D6]DMSO, 25 °C): δ = 173.7 (FcCO), 164.6
(C4), 149.9 (C2), 136.6 (C6), 111.6 (C5), 73.8 (C-αЈ), 72.9 (Ci), 71.9
(C-βЈ), 71.1 (Cp), 12.3 (CH3) ppm. HRMS (MALDI-TOF/TOF):
m/z calcd. for C16H14O3N2Fe [M + H]+ 339.1469; found 339.1470.
N1-Ferrocenoyl 5-Fluorouracil (2N1
,
R
=
F): Purple crystals
(203.04 mg, 59.4% yield); m.p.
Ͼ 200 °C. C15H11FFeN2O3
(342.108): calcd. C 52.66, H 3.24, O 14.03, N 8.19; found C 52.62,
H 3.22, O 14.00, N 8.16. IR (CH Cl ): ν = 3366 (w, NH), 2924 (w,
˜
2
2
C–H, Fc), 1720 (s, C=O), 1648 (s, C=O) cm–1. 1H NMR (400 MHz,
3
[D6]DMSO, 25 °C): δ = 12.0 (s, 1 H, N3-H), 8.4 (d, JF,H = 6.4 Hz,
[9]
[10]
3
3
1 H, C6-H), 4.9 (t, JH,H = 2.3 Hz, 2 H, H-αЈ), 4.7 (t, JH,H
=
2.3 Hz, 2 H, H-βЈ), 4.3 (s, 5 H, Cp) ppm. 13C NMR (100 MHz,
[D6]DMSO, 25 °C): δ = 172.7 (FcCO), 158.1 (d, JF,C = 27.1 Hz,
[11]
[12]
[13]
[14]
3
2
3
C4), 148.6 (C2), 140.9 (d, JF,C = 234.5 Hz, C5), 125.7 (d, JF,C
=
F
=
36.1 Hz, C6), 73.9 (C-αЈ), 72.5 (Ci), 71.9 (C-βЈ), 71.1 (Cp) ppm. 19
3
NMR (376 MHz, [D6]DMSO, 25 °C): δ = –167.4 (d, JH,F
6.4 Hz, C5-F) ppm. HRMS (MALDI-TOF/TOF): m/z calcd. for
C15H11FO3N2Fe [M + H]+ 343.1108; found 343.1111.
Supporting Information (see footnote on the first page of this arti-
cle): Cartesian coordinates and calculated energies for all computed
structures and additional NMR spectroscopic data for products.
[15]
[16]
A. Novácˇek, I. Hedrlín, Collect. Czech. Chem. Commun. 1967,
32, 1045–1050.
G. S. Abdrakhimova, M. Y. Ovchinnikov, A. N. Lobov, L. V.
Spirikhin, S. P. Ivanov, S. L. Khursan, J. Phys. Org. Chem.
2014, 27, 876–883.
Acknowledgments
[17]
[18]
P. S. Pregosin, in: Transition Metal Nuclear Magnetic Reso-
nance (Ed.: P. S. Pregosin), Elsevier, Amsterdam, 1991.
a) M. Bühl, F. T. Mauschick, F. Terstegen, B. Wrackmeyer, An-
gew. Chem. Int. Ed. 2002, 41, 2312–2315; Angew. Chem. 2002,
114, 2417; b) B. Wrackmeyer, O. L. Tok, A. Ayazi, H. E. Mai-
sel, M. Herberhold, Magn. Reson. Chem. 2004, 42, 827–830; c)
The research was supported by the University of Zagreb (grant
number KFPI 1.1.1.8). The authors thank the Computing Centre
SRCE for allocating computer time on the Isabella cluster. The
authors thank Professor Branka Zorc for the generous donation of
selected chemicals, and Ivana Amerl for the technical assistance.
The NMR instrument donation from Symrise AG is gratefully ac-
knowledged.
ˇ
A. Saric´, V. Vrcˇek, M. Bühl, Organometallics 2008, 27, 394–
ˇ
401; d) J. Lapic´, M. Cetina, D. Sakic´, S. Djakovic´, V. Vrcˇek, V.
Rapic´, ARKIVOC 2010, 9, 257–268.
[19]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B.
Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li,
H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Son-
[1] a) V. Sai Sudhir, C. Venkateswarlu, O. T. Muhammed Mus-
thafa, S. Sampath, S. Chandrasekaran, Eur. J. Org. Chem.
2009, 2120–2129; b) G. Mwande-Maguene, J. Jakhal, J.-B. Lek-
5430
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 5424–5431