Communication
ChemComm
4 P. Sander, K. Becker and M. D. Molin, Cell Chem. Biol., 2016, 23,
1044–1046.
¨
5 (a) G. Kallenius, M. Correia-Neves, H. Buteme, B. Hamasur and
S. B. Svenson, Tuberculosis, 2016, 96, 120–130; (b) Z. Palcekova,
M. Gilleron, S. Angala, J. M. Belardinelli and M. C. Jackson, ACS
Infect. Dis., 2020, 6, 2235–2248.
6 J. B. Torrelles, A. K. Azad and L. S. Schlesinger, J. Immunol., 2006,
177, 1805–1816.
7 K. Fischer, E. Scotet, M. Niemeyer, H. Koebernick, J. Zerrahn, S. Maillet,
R. Hurwitz, M. Kursar, M. Bonneville, S. H. E. Kaufmann and
U. E. Schaible, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 10685–10690.
8 N. A. Parlane, B. J. Compton, C. M. Hayman, G. F. Painter,
R. J. Basaraba, A. Heiser and B. M. Buddle, Vaccine, 2012, 30,
580–588.
9 G. Larrouy-Maumus, E. Layre, S. Clark, J. Prandi, E. Rayner,
M. Lepore, G. de Libero, A. Williams, G. Puzo and M. Gilleron,
Vaccine, 2017, 35, 1395–1402.
10 P. S. Patil, T.-J. R. Cheng, M. M. L. Zulueta, S.-T. Yang, L. S. Lico and
S.-C. Hung, Nat. Commun., 2015, 6, 7239.
11 M. Gilleron, M. Lepore, E. Layre, D. Cala-De Paepe, N. Mebarek,
`
J. A. Shayman, S. Canaan, L. Mori, F. Carriere, G. Puzo and G. De
Libero, Cell Chem. Biol., 2016, 23, 1147–1156.
12 H. de la Salle, S. Mariotti, C. Angenieux, M. Gilleron, L.-F. Garcia-
Fig. 3 Use of AcnPIMs loaded onto CD1b to activate T cells. (A) Structures
of natural PIM2 (left) and PIM6 (right). The acylation sites are indicated by
R1–R4; (B) stimulation of CD1b-restricted T cells with different acyl forms
ˆ
Alles, D. Malm, T. Berg, S. Paoletti, B. Maıtre and L. Mourey, Science,
2005, 310, 1321–1324.
of AcnPIMs, Ag = antigen. ***P o 0.001 compared to natural Ac3PIM2 and 13 M. Gilleron, C. Ronet, M. Mempel, B. Monsarrat, G. Gachelin and
G. Puzo, J. Biol. Chem., 2001, 276, 34896.
###P o 0.001 compared to natural Ac2PIM2.
14 (a) G. D. Ainge, B. J. Compton, C. M. Hayman, M. William John,
S. M. Toms, D. S. Larsen, J. L. Harper and G. F. Painter, J. Org. Chem.,
2011, 76(12), 4941–4951; (b) L. Xinyu, B. L. Stocker and P. H.
factor. This synthetic Ac2PIM2 was achieved from 1 in 17 steps
Seeberger, J. Am. Chem. Soc., 2006, 128(11), 3638; (c) G. M. Rankin,
in a 2.5% overall yield. A series of efficient synthetic transfor-
mations incorporated three building blocks (A, B1, B2) into the
pseudo-trisaccharide 24. The overall efficiency of the assembly
process benefited from the use of shared mannose building
blocks (B1, B2) and the carefully chosen mannoside protecting
groups (Fmoc, BOM). The key intermediate building block A
allowed for efficient stereoselective glycosylations of the
mannoside buliding blocks B and introduction of the phos-
phoglycerol building block C. The synthetic PIM epitope
Ac2PIM2 was significantly more active than was natural Ac2PIM2
in inducing the production of IFN-g, and hence could be
developed as a potential vaccine against tuberculosis.
We thank the National Natural Science Foundation of China
(No. 81903427), the Jiangsu Key Research and Development
Plan (Social Development No. BE2020672) project, the Natural
Science Foundation of Jiangsu Province (BK20160443), and the
Six Talent Peaks Project in Jiangsu Province (SWYY-094) for
financial support.
B. J. Compton, K. A. Johnston, C. M. Hayman, G. F. Painter and
D. S. Larsen, J. Org. Chem., 2012, 77(16), 6743–6759; (d) D. Wang,
D.-C. Xiong and X.-S. Ye, Chin. Chem. Lett., 2018, 29(9), 1340–1342;
(e) A. Yohei, T. Shota, M. Takanori, Y. Sho and F. Yukari, Org. Biomol.
Chem., 2020, 18, 3659–3663.
15 (a) B. Siwarutt, L. Xinyu, M. Mario, L. Bernd and P. H. Seeberger,
J. Am. Chem. Soc., 2008, 130(49), 16791; (b) G. D. Ainge, M. William
John, B. J. Compton, C. M. Hayman, D. S. Larsen, Y. Sung-Il,
I. A. Wilson, J. L. Harper and G. F. Painter, J. Med. Chem., 2011,
54(20), 7268–7279.
16 B. S. Dyer, J. D. Jones, G. D. Ainge, D. Michel, D. S. Larsen and
G. F. Painter, J. Org. Chem., 2007, 72, 3282–3288.
¨
17 G. D. Ainge, N. A. Parlane, M. Denis, B. S. Dyer, A. Harer,
C. M. Hayman, D. S. Larsen and G. F. Painter, J. Org. Chem., 2007,
72, 5291–5296.
18 S. L. Bender and R. J. Budhu, J. Am. Chem. Soc., 1991, 113,
9883–9885.
19 Y. Bourdreux, A. Lemetais, D. Urban and J.-M. Beau, Chem. Com-
mun., 2011, 47, 2146–2148.
20 S. Tani, S. Sawadi, M. Kojima, S. Akai and K.-i. Sato, Tetrahedron
Lett., 2007, 48, 3103–3104.
21 H. Takahashi, H. Kittaka and S. Ikegami, J. Org. Chem., 2001, 66,
2705–2716.
`
22 M. Adinolfi, A. Iadonisi, A. Ravida and M. Schiattarella, Tetrahedron
Lett., 2003, 44(43), 7863–7866.
´
23 G. Zemplen and E. Pacsu, Ber. Dtsch. Chem. Ges. (A and B Ser.), 1929,
Conflicts of interest
62, 1613–1614.
24 Z.-G. Wang, J. D. Warren, V. Y. Dudkin, X. Zhang, U. Iserloh,
M. Visser, M. Eckhardt, P. H. Seeberger and S. J. Danishefsky,
Tetrahedron, 2006, 62(20), 4954–4978.
There are no conflicts to declare.
25 J. Kandasamy, M. Hurevich and P. H. Seeberger, Chem. Commun.,
2013, 49, 4453–4455.
Notes and references
´
26 A. Lubineau and D. Bonnaffe, Eur. J. Org. Chem., 1999, 2523–2532.
1 M. Pai, M. A. Behr, D. Dowdy, K. Dheda, M. Divangahi, C. C.
Boehme, A. Ginsberg, S. Swaminathan, M. Spigelman, H. Getahun,
D. Menzies and M. Raviglione, Nat. Rev. Dis. Primers, 2016, 2, 16076.
2 J. Guiard, A. Collmann, M. Gilleron, L. Mori, G. De Libero, J. Prandi
and G. Puzo, Angew. Chem., Int. Ed., 2008, 120, 9880–9884.
3 J. D. Simmons, C. M. Stein, C. Seshadri, M. Campo, G. Alter, S. Fortune,
E. Schurr, R. S. Wallis, G. Churchyard, H. Mayanja-Kizza, W. H. Boom
and T. R. Hawn, Nat. Rev. Immunol., 2018, 18, 575–589.
27 G. M. Rankin, B. J. Compton, K. A. Johnston, C. M. Hayman,
G. F. Painter and D. S. Larsen, J. Org. Chem., 2012, 77(16),
6743–6759.
28 H.-H. Tan, A. Makino, K. Sudesh, P. Greimel and T. Kobayashi,
Angew. Chem., Int. Ed., 2012, 51(2), 533–535.
29 G. D. Ainge, J. Hudson, D. S. Larsen, G. F. Painter, G. S. Gill and
J. L. Harper, Bioorg. Med. Chem., 2006, 14(16), 5632–5642.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020