ChemComm
Page 4 of 4
DOI: 10.1039/C4CC09634G
Fig. 4 Energetics of the proposed reaction mechanism. Purple lines indicate free energy estimates after oxygen desorption at the experimental
conditions. The rate limiting step appears highlighted in red.
in the dissociated oxygen adsorbed on the substrate (not bound
to the extra Au atom) and the formation of the final product
(Fig. 4; config. 9) at a free energy of 1.40 eV after a transi-
tion state energy of 1.93 eV. Given the poor interaction of the
dissociated oxygen with the extra Au atom and that our XPS
results demonstrate the absence of oxygenated species on the
surface after the reaction, in the final configuration the oxygen
and the extra Au atoms are removed from the system simulta-
neously (Fig. 4; config. 10). This results in an increase of the
total energy of the system up to 3.22 eV and a reduction of its
free energy down to 0.67 eV at the experimental conditions.
The rate-limiting step of the proposed reaction mechanism is
the 1.37 eV that the system must overcome for the formation
of the Au-enolate in config. 7. It is important to note that such
a barrier can be overcome at our experimental conditions.
References
1 (a) A. Gourdon, Angew. Chem., Int. Ed., 2008, 47, 6950–6953; (b) D. F.
Perepichka and F. Rosei, Science, 2009, 323, 216–217..
2 L. Lafferentz, F. Ample, H. Yu, S. Hecht, C. Joachim and L. Grill, Sci-
ence, 2009, 323, 1193–1197..
3 S. Weigelt, C. Busse, C. Bombis, M. M. Knudsen, K. V. Gothelf, T. Strun-
skus, C. Wo¨ll, M. Dahlbom, B. Hammer, E. Lægsgaard, F. Besenbacher
and T. R. Linderoth, Angew. Chem., Int. Ed., 2007, 46, 9227–9230..
4 J. F. Dienstmaier, D. D. Medina, M. Dogru, P. Knochel, T. Bein, W. M.
Heckl and M. Lackinger, ACS Nano, 2012, 6, 7234–7242..
5 M. Treier, N. V. Richardson and R. Fasel, J. Am. Chem. Soc., 2008, 130,
14054–14055..
6 D. Y. Zhong, J. H. Franke, S. K. Podiyanachari, T. Blo¨mker, H. M. Zhang,
G. Kehr, G. Erker, H. Fuchs and L. F. Chi, Science, 2011, 334, 213–216..
7 H. Y. Gao, H. Wagner, D. Zhong, J. H. Franke, A. Studer and H. Fuchs,
Angew. Chem. Int. Edit., 2013, 52, 4024–4028..
8 O. D´ıaz Arado, H. Mo¨nig, H. Wagner, J. H. Franke, G. Langewisch, P. A.
Held, A. Studer and H. Fuchs, ACS Nano, 2013, 7, 8509–8515..
9 (a) J. E. McMurry and M. P. Fleming, J. Am. Chem. Soc., 1974, 96, 4708–
4709; (b) J. E. McMurry, Chem. Rev., 1989, 89, 1513–1524; (c) J. H.
Freudenberger, A. W. Konradi and S. F. Pedersen, J. Am. Chem. Soc.,
1989, 111, 8014–8016..
10 (a) L. Benz, J. Haubrich, R. G. Quiller, S. C. Jensen and C. M. Friend, J.
Am. Chem. Soc., 2009, 131, 15026–15031; (b) L. Benz, J. Haubrich, S. C.
Jensen and C. M. Friend, ACS Nano, 2011, 5, 834–843; (c) M. Shen and
F. Zaera, J. Am. Chem. Soc., 2009, 131, 8708–8713..
11 (a) J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks,
K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature, 1990,
347, 539–541; (b) N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J.
Heeger, G. Stucky and F. Wudl, Appl. Phys. Lett., 1993, 62, 585–587..
12 S. J. Blanksby and G. B. Ellison, Acc. Chem. Res., 2003, 36, 255–263..
13 X. Deng, B. K. Min, A. Guloy and C. M. Friend, J. Am. Chem. Soc., 2005,
127, 9267–9270..
14 G. Beamson and D. Briggs, High Resolution XPS of organic polymers:
the Scienta ESCA300 database, Wiley, New York, 1992..
15 F. Bebensee, K. Svane, C. Bombis, F. Masini, S. Klyatskaya, F. Besen-
bacher, M. Ruben, B. Hammer and T. Linderoth, Chem. Comm., 2013,
49, 9308–9310. .
In conclusion, we have shown the successful reductive cou-
pling of an aldehyde on a Au(111) surface leading to the for-
mation of a PPV derivative. The obtained oligomers 2 were
found to be covalently interlinked and to remain weakly ad-
sorbed on the substrate while oxygen completely desorbs dur-
ing the reaction. Based on our results, the so far accepted
reaction pathway for reductive aldehyde coupling involving
a vicinal diolate intermediate is not dominating the observed
on-surface reaction. Different alternatives were explored, and
an energetically favored C-C coupling mechanism proceeding
via initial C-H activation of the aldehydes followed by a de-
oxygenation process favored by gold adatoms on the surface
is proposed. With this on-surface synthesis approach, nanos-
tructures with tunable optoelectronic properties on substrates
can be developed, thus increasing the existing pool of suitable
reactions for bottom-up growth of organic nanostructures on
surfaces.
Financial support by the Deutsche Forschungsgemeinschaft
(DFG) through the SFB 858 (project B2) and the transregional
collaborative research center TRR 061 (projects B3 and B7) is
gratefully acknowledged.
4 |
1–4