8858 J . Org. Chem., Vol. 66, No. 26, 2001
Shimada et al.
(S)-2′-Bor a n a tod ip h en ylp h osp h in o-2-d im eth ylsilyl-1,1′-
511.2011, found 511.2012. Anal. Calcd for C35H31PSi: C, 83.32;
H, 6.12. Found: C, 81.83; H, 6.43.
bin a p h th yl (13d ): [R]20 -47.4 (c 0.70, chloroform); 1H NMR
D
(CDCl3) δ -0.34 (d, J ) 3.7, 3H), 0.20 (d, J ) 3.7 Hz, 3H),
3.80 (septet, J ) 3.7 Hz, 1H), 6.77 (d, J ) 8.3 Hz, 1H), 6.84
(dd, J ) 8.0, 7.2 Hz, 1H), 7.05-7.09 (m, 3H), 7.21-7.29 (m,
7H), 7.33-7.39 (m, 3H), 7.51 (dd, J ) 7.7, 7.2 Hz, 1H), 7.55
(d, J ) 8.3 Hz, 1H), 7.61 (t, J ) 9.2 Hz, 1H), 7.71 (d, J ) 8.1
Hz, 1H), 7.77 (d, J ) 8.3 Hz, 1H), 7.90 (d, J ) 8.0 Hz, 1H),
7.93 (d, J ) 8.6 Hz, 1H); 31P{1H} NMR δ 22.8 (br s); 13C NMR
(CDCl3) δ -3.73 (Si-CH3), -2.67 (Si-CH3); HRMS (FAB) calcd
for C32H23PB (M - SiMe2H - 2H)+ 449.1636, found 449.1634.
(S)-2-Bor a n a tod ip h en ylp h osp h in o-2′-tr im eth ylsilyl-1,1′-
bin a p h th yl (13e): [R]20D -8.2 (c 1.00, chloroform) for (S)-13e
Oxid a tion of 2′-Su bstitu ted 2-Dip h en ylp h osp h in o-1,1′-
bin a p h th yls (9) w ith m CP BA for th e Deter m in a tion of
En a n tiom er ic P u r ity. A typical procedure is given for the
preparation of (S)-2′-Dip h en ylp h osp h in yl-2-iod o-1,1′-bi-
n a p h th yl (4b). To a solution of 9b (36 mg, 0.063 mmol) in
2.0 mL of CH2Cl2 were added NaHCO3 (9.6 mg, 0.11 mmol)
and mCPBA (17 mg, 0.096 mmol). The suspension was stirred
at room temperature for 2 h and concentrated in vacuo. The
residue was dissolved in ethyl acetate and washed with
saturated NaHCO3 solution. The organic phase was dried over
anhydrous MgSO4 and evaporated. The crude product was
purified by silica gel preparative thin-layer chromatography
(hexane/ethyl acetate ) 1/1) to give 31 mg (85% yield) of 4b:
1H NMR (CDCl3) δ 6.97 (d, J ) 8.4 Hz, 1H), 7.05 (d, J ) 8.4
Hz, 1H), 7.09 (d, J ) 8.5 Hz, 1H), 7.15 (dt, J ) 7.7, 2.9 Hz,
2H), 7.20 (dt, J ) 7.7, 2.9 Hz, 2H), 7.27-7.36 (m, 4H), 7.39-
7.49 (m, 5H), 7.55 (t, J ) 8.0 Hz, 1H), 7.70 (d, J ) 8.2 Hz,
1H), 7.75 (d, J ) 8.7 Hz, 1H), 7.77 (dd, J ) 11.5, 8.6 Hz, 1H),
7.94 (d, J ) 8.0 Hz, 1H), 8.01 (d, J ) 8.7 Hz, 1H); 31P{1H}
NMR δ 28.3 (s); HRMS (FAB) calcd for C32H23OPI (M + H)+
1
of 96% ee; H NMR (CDCl3) δ -0.18 (s, 9H), 6.58 (d, J ) 8.4
Hz, 1H), 6.64 (t, J ) 7.6 Hz, 1H), 6.95 (dt, J ) 7.5, 2.2 Hz,
2H), 7.09 (dd, J ) 10.8, 8.3 Hz, 2H), 7.14-7.19 (m, 3H), 7.26
(m, 1H), 7.36 (m, 2H), 7.43 (t, J ) 7.3 Hz, 1H), 7.47-7.54 (m,
3H), 7.58 (t, J ) 9.4 Hz, 1H), 7.64 (d, J ) 8.1 Hz, 1H), 7.66 (d,
J ) 8.1 Hz, 1H), 7.76 (d, J ) 8.3 Hz, 1H), 7.92 (t, J ) 8.7 Hz,
2H); 31P{1H} NMR δ 22.6 (br s); 13C NMR (CDCl3) δ +0.01
(Si-CH3); HRMS (FAB) calcd for C32H23PB (M - SiMe3 - 2H)+
449.1636, found 449.1634.
581.0531, found 581.0533; [R]20 -110.1 (c 1.04, chloroform).
Rem ova l of Bor a n e fr om 2′-Su bstitu ted Bor a n a to-
d ip h en ylp h osp h in o-1,1′-bin a p h th yls (13). A typical pro-
cedure is given for the preparation of (R)-2′-d eu ter io-2-
d ip h en ylp h osp h in o-1,1′-bin a p h th yl (9a ). To a solution of
borane complex 13a (74 mg, 0.16 mmol) in 5.0 mL of THF was
added diethylamine (0.17 mL, 1.7 mmol) at room temperature,
and the mixture was kept stirring at 40 °C for 1 h. Evaporation
followed by silica gel preparative thin-layer chromatography
(benzene/hexane ) 1/1) of the residue gave 65.1 mg (91% yield)
D
The enantiomeric purity of 4b was determined to be >99% by
HPLC analysis with Chiralcel OD-H (hexane/2-propanol ) 90/
10).
In a similar manner, phosphines 9a , c, and e were oxidized
into the corresponding phosphine oxides 4a , c, and e. In the
reaction of 9d , the hydrosilyl group was oxidized into hydroxy-
silyl during the oxidation of phosphine. The method for the
determination of enantiomeric purity is shown in footnote c
of Table 1. (R)-4a : (>99% ee), [R]20D -16.8 (c 1.00, chloroform).
(S)-2′-Diph en ylph osph in yl-2-tr im eth ylstan n yl-1,1′-bin aph -
th yl (4c): (>99% ee), [R]20D +82.7 (c 1.00, chloroform); 1H NMR
(CDCl3) δ -0.22 (s, 9H, J (Sn-CH3) ) 54.4 Hz)), 6.73-6.76
(m, 3H), 6.92 (t, J ) 8.1 Hz, 2H), 7.06 (dd, J ) 12.0, 8.1 Hz,
2H), 7.16-7.20 (m, 2H), 7.25 (t, J ) 7.6 Hz, 1H), 7.37-7.40
(dt, J ) 7.5, 2.1 Hz, 2H), 7.44 (t, J ) 7.3 Hz, 1H), 7.52-7.58
(m, 4H), 7.64 (dd, 11.7, 8.7 Hz, 1H), 7.72-7.74 (m, 2H), 7.91-
7.93 (m, 2H); 31P{1H} NMR δ 26.8 (s); 13C NMR (CDCl3) δ
-7.96 (J (119Sn-CH3) ) 351.8 Hz, J (117Sn-CH3) ) 336.4 Hz).
Anal. Calcd for C35H31OPSn: C, 68.10; H, 5.06. Found: C,
68.40; H, 5.36. (S)-2-Dip h en ylp h osp h in yl-2′-d im eth ylh y-
of 9a : [R]20 -100.0 (c 0.76, chloroform).
D
In a similar manner, treatment of the borane complex
13b-e with 10 equiv of diethylamine in THF gave a high yield
of the corresponding phosphines 9b-e. (S)-2′-Dip h en ylp h os-
p h in o-2-iod o-1,1′-bin a p h th yl (9b): [R]20 -52.5 (c 0.96,
D
chloroform); 1H NMR (CDCl3) δ 6.70 (d, J ) 8.4 Hz, 1H), 6.83
(t, J ) 7.3 Hz, 1H), 7.01 (t, J ) 7.4 Hz, 2H), 7.07-7.13 (m,
3H), 7.19 (t, J ) 7.3 Hz, 1H), 7.27-7.33 (m, 7H), 7.47-7.51
(m, 2H), 7.68 (d, J ) 8.7 Hz, 1H), 7.82 (d, J ) 8.2 Hz, 1H),
7.91 (t, J ) 8.6 Hz, 2H), 8.06 (d, J ) 8.6 Hz, 1H); 31P{1H} NMR
δ -13.0 (s); HRMS (FAB) calcd for C32H23PI (M + H)+
565.0582, found 565.0583. Anal. Calcd for C32H22PI: C, 68.10;
H, 3.93. Found: C, 68.21; H, 3.75. (S)-2′-Dip h en ylp h os-
ph in o-2-tr im eth ylstan n yl-1,1′-bin aph th yl (9c): [R]20D -21.0
(c 1.01, chloroform); 1H NMR (CDCl3) δ -0.40 (s, 9H, J (119Sn-
CH3) ) 55.6 Hz, J (117Sn-CH3) ) 54.7 Hz)), 6.77 (d, J ) 8.2
Hz, 1H), 6.84 (dd, J ) 8.3, 6.7 Hz, 1H), 6.98 (t, J ) 7.3 Hz,
2H), 7.06 (t, J ) 7.5 Hz, 2H), 7.14 (t, J ) 7.3 Hz, 1H), 7.23-
7.28 (m, 8H), 7.46 (ddd, J ) 8.0, 5.1, 2.5 Hz, 1H), 7.54 (dd, J
) 8.5, 2.7 Hz, 1H), 7.74 (d, J ) 6.7 Hz, 1H), 7.80 (d, J ) 8.2
Hz, 1H), 7.87-7.93 (m, 3H); 31P{1H} NMR δ -14.8 (s); 13C
NMR (CDCl3) δ -8.79 (J (119Sn-CH3) ) 347.1 Hz, J (117Sn-
CH3) ) 330.6 Hz). Anal. Calcd for C35H31PSn: C, 69.91; H,
5.20. Found: C, 70.19; H, 5.39. (S)-2-Dip h en ylp h osp h in o-
20
d r oxysilyl-1,1′-bin a p h th yl (4d ): (>99% ee), [R]D +33.5 (c
1
0.67, chloroform); H NMR (CDCl3) δ -0.85 (s, 3H), 0.46 (s,
3H), 6.63 (d, J ) 8.6 Hz, 1H), 6.68 (dt, J ) 7.7, 3.1 Hz, 2H),
6.85 (t, J ) 8.1 Hz, 1H), 6.89 (t, J ) 7.5 Hz, 1H), 7.03 (dd, J
) 12.3, 7.1 Hz, 2H), 7.09 (d, J ) 8.6 Hz, 1H), 7.19 (t, J ) 7.8
Hz, 1H), 7.23 (t, J ) 8.3 Hz, 1H), 7.47-7.54 (m, 6H), 7.66 (d,
J ) 8.3 Hz, 1H), 7.80 (d, J ) 8.3 Hz, 1H), 7.85 (dd, J ) 11.4,
7.0 Hz, 2H), 7.91 (d, J ) 8.3 Hz, 1H), 7.94 (dd, J ) 8.8, 2.2 Hz,
1H); 31P{1H} NMR δ 30.2 (s); 13C NMR (CDCl3) δ 0.26 (Si-
CH3), 0.92 (Si-CH3); HRMS (FAB) calcd for C34H30O2PSi (M
+ H)+ 529.1753, found 529.1747. (S)-2-Dip h en ylp h osp h in yl-
2′-tr im eth ylsilyl-1,1′-bin a p h th yl (4e): 96% ee; [R]20D +45.6
1
2′-d im eth ylsilyl-1,1′-bin a p h th yl (9d ): [R]20 -39.8 (c 1.00,
(c 1.00, chloroform); H NMR (CDCl3) δ -0.17 (s, 9H), 6.74-
D
chloroform); 1H NMR (CDCl3) δ -0.28 (d, J ) 3.7, 3H), -0.03
(d, J ) 3.7, 3H), 3.73 (septet, J ) 3.7 Hz, 1H), 6.77 (d, J ) 8.6
Hz, 1H), 6.87 (t, J ) 8.6 Hz, 1H), 6.97 (t, J ) 7.6 Hz, 2H), 7.07
(t, J ) 7.3 Hz, 2H), 7.14-7.19 (m, 2H), 7.21-7.32 (m, 7H),
7.44-7.50 (m, 2H), 7.73 (d, J ) 8.3 Hz, 1H), 7.83 (d, J ) 8.1
Hz, 1H), 7.88 (d, J ) 8.5 Hz, 1H), 7.89 (d, J ) 8.4 Hz, 1H),
7.96 (d, J ) 8.2 Hz, 1H); 31P{1H} NMR δ -14.8 (s); 13C NMR
(CDCl3) δ -3.86 (Si-CH3), -3.00 (Si-CH3); HRMS (FAB) calcd
for C34H30PSi (M + H)+ 497.1854, found 497.1853. Anal. Calcd
for C34H29PSi: C, 82.22; H, 5.89. Found: C, 82.03; H, 6.01.
(S)-2-Dip h en ylp h osp h in o-2′-t r im et h ylsilyl-1,1′-b in a p h -
6.78 (m, 3H), 6.90 (t, J ) 7.7 Hz, 1H), 6.95 (t, J ) 7.7 Hz, 1H),
7.02 (dd, J ) 12.1, 7.9 Hz, 2H), 7.14 (d, J ) 8.7 Hz, 1H), 7.20
(t, J ) 8.0 Hz, 1H), 7.25 (t, J ) 7.6 Hz, 1H), 7.40 (ddd, J )
7.9, 7.4, 2.7 Hz, 2H), 7.47 (t, J ) 8.0 Hz, 1H), 7.53 (dd, J )
7.7, 7.1 Hz, 1H), 7.55 (d, J ) 8.2 Hz, 1H), 7.61 (s, 2H), 7.67
(dd, J ) 11.7, 8.8 Hz, 1H), 7.72 (dd, J ) 11.3, 7.7 Hz, 2H),
7.91 (d, J ) 8.4 Hz, 1H), 7.94 (dd, J ) 8.7, 2.1 Hz, 1H); 31P-
{1H} NMR δ 27.1 (s); 13C NMR (CDCl3) δ -0.05 (Si-CH3);
HRMS (FAB) calcd for C35H32OPSi (M + H)+ 527.1960, found
527.1964.
th yl (9e): [R]20 -25.2 (c 0.66, chloroform) for (S)-9e of 96%
Ack n ow led gm en t. This work was supported by the
“Research for the Future” Program, the J apan Society
for the Promotion of Science, and a Grant-in-Aid for
Scientific Research, the Ministry of Education, J apan.
We thank Professor Atsuhiro Osuka and Mr. Hiromitsu
Maeda for obtaining the HRMS data.
D
ee; 1H NMR (CDCl3) δ -0.30 (s, 9H), 6.65 (d, J ) 8.4 Hz, 1H),
6.74 (t, J ) 8.4 Hz, 1H), 6.94 (d, J ) 7.7 Hz, 2H), 7.05 (t, J )
7.0 Hz, 2H), 7.03-7.06 (m, 2H), 7.14 (t, J ) 7.3 Hz, 1H), 7.21-
7.29 (m, 8H), 7.45-7.48 (m, 1H), 7.53 (dd, J ) 8.6, 2.6 Hz,
1H), 7.78-7.80 (m, 2H), 7.88 (t, J ) 8.3 Hz, 2H), 7.94 (d, J )
8.3 Hz, 1H); 31P{1H} NMR δ (s) -15.3 (s); 13C NMR (CDCl3) δ
-0.02 (Si-CH3); HRMS (FAB) calcd for C35H32SiP (M + H)+
J O010691X