complete conversion of aryl bromides, albeit aryl iodides
delivered moderate yields in the same conditions. Very
recently, the Suzuki coupling reaction catalyzed by the
Pd(OAc)2-H2O-TBAB system was investigated under
conventional thermal conditions and microwave irradia-
tion.10,11 PEGs are known to be nontoxic, recoverable, and
inexpensive media of phase-transfer catalysts.12 The
Suzuki reaction of PEG-bound aryl halides has been
reported.13a However, the Suzuki coupling reaction for
non-PEG-bound aryl halides was only studied under
microwave conditions, and the yields of the PEG-bound
products were superior to those of non-PEG-bound trans-
formations.13 We herein report the application of
Pd(OAc)2-H2O-PEG system as an efficient catalytic
medium for the Suzuki coupling reaction. We found that
the ratio of water and PEG was pivotal to the Suzuki
reaction of non-PEG-bound aryl halides, and the conven-
tional thermal condition was more applicable to the
Pd(OAc)2-H2O-PEG system than the microwave ir-
radiation.
Phosphine-Free Palladium Acetate
Catalyzed Suzuki Reaction in Water
Leifang Liu, Yuhong Zhang,* and Yanguang Wang
Department of Chemistry, Zhejiang University,
Hangzhou 310027, P.R. China
Received April 12, 2005
Pd(OAc)2 in a mixture of water and poly(ethylene glycol)
(PEG) is shown to be an extremely active catalyst for the
Suzuki reaction of aryl iodides and bromides. The reaction
can be conducted under mild conditions (50 °C) without the
use of a microwave or phosphine ligand in high yields. The
isolation of the products is readily performed by the extrac-
tion of diethyl ether, and the Pd(OAc)2-PEG can be reused
without significant loss in activity.
The effect of PEG on the Suzuki reaction in water was
initially investigated. The coupling of 4-bromotoluene (1
mmol) and phenylboronic acid (1.5 mmol) was chosen as
the model reaction. The reaction was carried out in water
(3 g) in the presence of 1 mol % of Pd(OAc)2 using
The Suzuki coupling reaction is an important and
versatile method for the generation of unsymmetrical
biaryls from arylboronic acids and aryl halides in a single
step.1 As an intriguingly flexible reaction, it offers
considerable potential in the synthesis of natural prod-
ucts, herbicides, pharmaceuticals, and conducting poly-
mers.2 The traditional Suzuki reaction usually proceeds
using phosphine-based palladium catalysts, and there
has been considerable recent interest in the develop-
ment of new catalysts that are environmentally be-
nign and efficient. Some significant advances have been
made, including the use of palladium nanoparticles,3
water-soluble phosphines as ligands,4 microwave tech-
nology,5 nucleophilic carbene ligands,6 ionic liquids,7 and
so on.8
Water has clear advantages as a solvent for use in
chemistry because it is cheap, readily available, and
nontoxic. The phosphine-free Suzuki reaction involving
water as the cosolvent was reported by Wallow and
Novak in 1994.9a,b Later, Badone and co-workers devel-
oped an elegant method of Suzuki reaction by using water
as the solvent and palladium acetate as the catalyst.9c
In their experiments, 1 equiv of tetrabutylaminium
bromide (TBAB) was required as the promoter for the
(4) (a) Dupuis, C.; Adiey, K.; Charruault, L.; Michelet, V.; Savignac,
M.; Gene´t, J.-P. Tetrahedron Lett. 2001, 42, 6523. (b) Moore, L. R.;
Shaughnessy, K. H. Org. Lett. 2004, 6, 225. (c) Shaughnessy, K. H.;
Booth, R. S. Org. Lett. 2001, 3, 2757. (d) Adjabeng, G.; Brenstrum, T.;
Wilson, J.; Frapton, C.; Robertson, A.; Hillhouse, J.; McNulty, J.;
Capretta, A. Org. Lett. 2003, 5, 953. (e) Kataoka, N.; Shelby, Q.;
Stambuli, J. P.; Hartwig, J. F. J. Org. Chem. 2002, 67, 5553-5566.
(5) (a) Leadbeater, N. E.; Marco, M. Org. Lett. 2002, 4, 2973. (b)
Larhed, M.; Hallberg, A. J. Org. Chem. 1996, 61, 9582. (c) Wu, T. Y.
H.; Schultz, P. G.; Ding, S. Org. Lett. 2003, 5, 3587. (d) Leadbeater, N.
E.; Marco, M. J. Org. Chem. 2003, 68, 5660. (e) Wang, Y.; Sauer, D. R.
Org. Lett. 2004, 6, 2793. (f) Kabalka, G. W.; Pagni, R. M.; Wang, L.;
Namboodiri, C. M. Green. Chem. 2000, 2, 120.
(6) (a) Herrmann, W. A.; Reisinger, C.-P.; Spiegler, M. J. Organomet.
Chem. 1998, 557, 93. (b) Navarro, O.; Kelly, R. A., III; Nolan, S. P. J.
Am. Chem. Soc. 2003, 125, 16194. (c) Alonso, D. A.; Najera, C.; Pacheco,
M. C. J. Org. Chem. 2002, 67, 5588. (d) Navarro, O.; Kaur, H.; Mahjoor,
P.; Nolan, S. P. J.Org. Chem. 2003, 69, 3173. (e) Xiong, Z.; Wang, N.;
Dai, M.; Li , A.; Chen, J.; Yang, Z. Org. Lett. 2004, 6, 3337.
(7) (a) Revell, J. D.; Ganesan, A. Org. Lett. 2002, 4, 3071. (b) Miao
, W.; Chan, T. H. Org. Lett. 2003, 5, 5003. (b) Mathews, C. J.; Smithb,
P. J.; Welton, T. Chem. Commun. 2000, 1249. (c) Rajagopal, R.;
Jarikote, D. V.; Srinivasan, K. V. Chem. Commun. 2002, 616.
(8) (a) Baleizao, C.; Corma, A.; Garcia, H.; Leyva, A. Chem. Commun.
2003, 606. (b) Mori, Y.; Seki, M. J. Org. Chem. 2003, 68, 1571. (c)
Botella, L.; Najera, C. Angew. Chem., Int. Ed. 2002, 41, 179. (d) Tao,
B.; Boykin, D. W. J. Org. Chem. 2004, 69, 4330. (e) Sakurai, H.;
Tsukuda, T.; Hirao, T. J. Org. Chem. 2002, 67, 2721. (f) Indolese, A.
F. Tetrahedron Lett. 1997, 38, 3513-3516.
(9) (a) Goodson, F. E.; Wallow, T. I.; Novak, B. M. Org. Synth. 1998,
75, 61. (b) Wallow, T. I.; Novak, B. M. J. Org. Chem. 1994, 59, 5034.
(c) Badone, D.; Baroni, M.; Cardamone, R.; Ielmini, A.; Guzzi, U. J.
Org. Chem. 1997, 62, 7170.
(10) Bedford, R. B.; Blake, M. E.; Butts, C. P.; Holder, D. Chem.
Commun. 2003, 466.
* To whom correspondence should be addressed. Fax: +86-571-
87951512. Tel: +86-571-87953253.
(1) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (b)
Hassan, J.; Se´vignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem.
Rev. 2002, 102, 1359. (c) Miyaura, N. Top. Curr. Chem. 2002, 11.
(2) (a) Nicolaou, K. C.; Boddy, C. N. C.; Brase, S.; Winssinger, N.
Angew. Chem., Int. Ed. 1999, 38, 2096. (b) Baudoin, O.; Cesario, M.;
Guenard, D.; Gueritte, F. J. Org. Chem. 2002, 67, 1199. (c) Pu, L.
Chem. Rev. 1998, 98, 2405. (d) Tsuji, J. In Palladium Reagents and
Catalysts; John Wiley and Sons: NewYork, 1995.
(3) (a) Kogan, V.; Aizenshtat, Z.; Popovitz-Biro, R.; Neumann, R.Org.
Lett. 2002, 4, 3529. (b) Thathagar, M. B.; Beckers, J.; Rothenberrg, J.
J. Am. Chem. Soc. 2002, 124, 11858. (c) Reetz, M. T.; Westermann, E.
Angew. Chem., Int. Ed. 2000, 39, 165.
(11) (a) Leadbeater, N. E.; Marco, M. Org. Lett. 2002, 4, 2973. (b)
Leadbeater, N. E.; Marco, M. J. Org. Chem. 2003, 68, 888.
(12) (a) Sauvagnat, B.; Lamaty, F.; Lazaro, R.; Martinez, J. Tetra-
hedron Lett. 1998, 39, 821. (b) Gokel, G. W.; Goli, D. M.; Schultz, R. A.
J. Org. Chem. 1983, 48, 2837. (c) Harris, J. M.; Hundley, N. H.;
Shannon, T. G.; Struck, E. C. J. Org. Chem. 1982, 47, 4789. (d) Harris,
J. M. In Poly(Ethylene Glycol) Chemistry. Biotechnological and Bio-
medical Applications; Harris, J. M., Ed.; Plenum Press: New York,
1992; p 3.
(13) (a) Blettner, C. G.; Ko¨nig, W. A.; Stenzel, W.; Schotten, T. J.
Org. Chem. 1999, 64, 3885. (b) Namboodiri, V. V.; Varma, R. S. Green
Chem. 2001, 3, 146.
10.1021/jo050724z CCC: $30.25 © 2005 American Chemical Society
Published on Web 06/29/2005
6122
J. Org. Chem. 2005, 70, 6122-6125