Page 7 of 9
ACS Catalysis
Suggests a Mechanism for Regioselective Chlorination. Science
2005, 309, 2216–2219.
Coghi, P.; Monti, D. Facile Oxidation of Leucomethylene Blue
and Dihydroflavins by Artemisinins: Relationship with
Flavoenzyme Function and Antimalarial Mechanism of Action.
ChemMedChem 2010, 5, 1282–1299.
Knaus, T.; Paul, C. E.; Levy, C. W.; De Vries, S.; Mutti, F. G.;
Hollmann, F.; Scrutton, N. S. Better than Nature: Nicotinamide
Biomimetics That Outperform Natural Coenzymes. J. Am. Chem.
Soc. 2016, 138, 1033–1039.
1
2
(8)
Frese, M.; Guzowska, P. H.; Voß, H.; Sewald, N. Regioselective
Enzymatic Halogenation of Substituted Tryptophan Derivatives
Using the FAD-Dependent Halogenase RebH. ChemCatChem
2014, 6, 1270–1276.
Schnepel, C.; Sewald, N. Enzymatic Halogenation: A Timely
Strategy for Regioselective C−H Activation. Chem. Eur. J. 2017,
23, 12064–12086.
Andorfer, M. C.; Grob, J. E.; Hajdin, C. E.; Chael, J. R.; Siuti, P.;
Lilly, J.; Tan, K. L.; Lewis, J. C. Understanding Flavin-Dependent
Halogenase Reactivity via Substrate Activity Profiling. ACS
Catal. 2017, 7, 1897–1904.
Shepherd, S. A.; Karthikeyan, C.; Latham, J.; Struck, A. W.;
Thompson, M. L.; Menon, B. R. K.; Styles, M. Q.; Levy, C.; Leys, D.;
Micklefield, J. Extending the Biocatalytic Scope of
Regiocomplementary Flavin-Dependent Halogenase Enzymes.
Chem. Sci. 2015, 6, 3454–3460.
Keller, S.; Wage, T.; Hohaus, K.; Hölzer, M.; Eichhorn, E.; Van
Pée, K. H. Purification and Partial Characterization of
Tryptophan 7- Halogenase (PrnA) from Pseudomonas
Fluorescens. Angew. Chem. Int. Ed. 2000, 39, 2300–2302.
Zhao, H.; Van Der Donk, W. A. Regeneration of Cofactors for Use
in Biocatalysis. Curr. Opin. Biotechnol. 2003, 14, 583–589.
Van Der Donk, W. A.; Zhao, H. Recent Developments in Pyridine
Nucleotide Regeneration. Curr. Opin. Biotechnol. 2003, 14,
421–426.
Payne, J. T.; Andorfer, M. C.; Lewis, J. C. Regioselective Arene
Halogenation Using the FAD-Dependent Halogenase RebH.
Angew. Chem. Int. Ed. 2013, 52, 5271–5274.
Yeh, E.; Garneau, S.; Walsh, C. T. Robust in Vitro Activity of
RebF and RebH, a Two-Component Reductase/Halogenase,
3
(25)
4
5
(9)
6
(26)
(27)
Karrer, P.; Warburg, O. Iodomethylate of Nicotinic Amide.
Biochem. Z. 1936, 285, 297–298.
7
(10)
Taylor, K. E.; Jones, J. B. Nicotinamide Coenzyme Regeneration
by Dihydropyridine and Pyridinium Compounds. J. Am. Chem.
Soc. 1976, 98, 5689–5694.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(11)
(12)
(28)
(29)
Lo, H. C.; Fish, R. H. Biomimetic NAD+ Models for Tandem
Cofactor Regeneration, Horse Liver Alcohol Dehydrogenase
Recognition of 1,4-NADH Derivatives, and Chiral Synthesis.
Angew. Chem. Int. Ed. 2002, 41, 478–481.
Lutz, J.; Hollmann, F.; Ho, T. V.; Schnyder, A.; Fish, R. H.; Schmid,
A. Bioorganometallic Chemistry: Biocatalytic Oxidation
Reactions with Biomimetic NAD+/NADH Co-Factors and
[Cp*Rh(Bpy)H]+ for Selective Organic Synthesis. J. Organomet.
Chem. 2004, 689, 4783–4790.
Paul, C. E.; Arends, I. W. C. E.; Hollmann, F. Is Simpler Better?
Synthetic Nicotinamide Cofactor Analogues for Redox
Chemistry. ACS Catal. 2014, 4, 788–797.
(13)
(14)
(30)
(31)
(32)
(33)
Paul, C. E.; Tischler, D.; Riedel, A.; Heine, T.; Itoh, N.; Hollmann,
F. Nonenzymatic Regeneration of Styrene Monooxygenase for
Catalysis. ACS Catal. 2015, 5, 2961–2965.
(15)
(16)
Mauzerall,
D.;
Westheimer,
F.
H.
1-
Benzyldihydronicotinamide—A Model for Reduced DPN. J. Am.
Chem. Soc. 1955, 77, 2261–2264.
Zehner, S.; Kotzsch, A.; Bister, B.; Süssmuth, R. D.; Méndez, C.;
Salas, J. A.; Van Pée, K. H. A Regioselective Tryptophan 5-
Halogenase Is Involved in Pyrroindomycin Biosynthesis in
Streptomyces Rugosporus LL-42D005. Chem. Biol. 2005, 12,
445–452.
Seibold, C.; Schnerr, H.; Rumpf, J.; Kunzendorf, A.; Hatscher, C.;
Wage, T.; Ernyei, A. J.; Dong, C.; Naismith, J. H.; van Pée, K. H. A
Flavin-Dependent Tryptophan 6-Halogenase and Its Use in
Generating
7-Chlorotryptophan
during
Rebeccamycin
Biosynthesis. Proc. Natl. Acad. Sci. 2005, 102, 3960–3965.
Payne, J. T.; Poor, C. B.; Lewis, J. C. Directed Evolution of RebH
for Site-Selective Halogenation of Large Biologically Active
Molecules. Angew. Chem. Int. Ed. 2015, 54, 4226–4230.
Paul, C. E.; Gargiulo, S.; Opperman, D. J.; Lavandera, I.; Gotor-
Fernández, V.; Gotor, V.; Taglieber, A.; Arends, I. W. C. E.;
Hollmann, F. Mimicking Nature: Synthetic Nicotinamide
Cofactors for C=C Bioreduction Using Enoate Reductases. Org.
Lett. 2013, 15, 180–183.
Unversucht, S.; Hollmann, F.; Schmid, A.; Van Pée, K. H. FADH2-
Dependence of Tryptophan 7-Halogenase. Adv. Synth. Catal.
2005, 347, 1163–1167.
Paul, C. E.; Churakova, E.; Maurits, E.; Girhard, M.; Urlacher, V.
B.; Hollmann, F. In Situ Formation of H2O2 for P450
Peroxygenases. Bioorg. Med. Chem. 2014, 22, 5692–5696.
Ohnishi, Y.; Kagami, M.; Ohno, A. Reduction by a Model of
NAD(P)H. Effect of Metal Ion and Stereochemistry on the
Reduction of α-Keto Esters by 1,4-Dihydronicotinamide
Derivatives. J. Am. Chem. Soc. 1975, 97, 4766–4768.
Abeles, R. H.; Hutton, R. F.; Wbstheimer, F. H. The Reduction of
Thioketones by a Model for a Coenzyme. J. Am. Chem. Soc.
1957, 79, 712–716.
Knox, R. J.; Jenkins, T. C.; Hobbs, S. M.; Chen, S.; Melton, R. G.;
Burke, P. J. Bioactivation of 5-(Aziridin-1-Yl)-2,4-
Dinitrobenzamide (CB 1954) by Human NAD(P)H Quinone
Oxidoreductase 2: A Novel Co-Substrate-Mediated Antitumor
Prodrug Therapy. Cancer Res. 2000, 60, 4179–4186.
(17)
(18)
(34)
(35)
Modification
of
Pyrrolnitrin
Biosynthesis.
Biocatal.
Biotransform. 2006, 24, 401–408.
Ostović, D.; Lee, I. S. H.; Roberts, R. M. G.; Kreevoy, M. M.
Hydride Transfer and Oxyanion Addition Equilibria of NAD+
Analogues. J. Org. Chem. 1985, 50, 4206–4211.
(19)
(20)
(21)
(36)
(37)
Massey, V. Activation of Molecular Oxygen by Flavins and
Flavoproteins. J. Biol. Chem. 1994, 269, 22459–22462.
Yeh, E.; Cole, L. J.; Barr, E. W.; Bollinger, J. M.; Ballou, D. P.;
Walsh, C. T. Flavin Redox Chemistry Precedes Substrate
Chlorination during the Reaction of the Flavin-Dependent
Halogenase RebH. Biochemistry 2006, 45, 7904–7912.
Schroeder, L.; Frese, M.; Müller, C.; Sewald, N.; Kottke, T.
Photochemically Driven Biocatalysis of Halogenases for the
Green Production of Chlorinated Compounds. ChemCatChem
2018, 10, 3336–3341.
Massey, V. The Chemical and Biological Versatility of
Riboflavin. Biochem. Soc. Trans. 2000, 28, 283.
Sheldon, R. A. Characteristic Features and Biotechnological
Applications of Cross-Linked Enzyme Aggregates (CLEAs).
Appl. Microbiol. Biotechnol. 2011, 92, 467–477.
(38)
(22)
(23)
(39)
(40)
(41)
Frese, M.; Sewald, N. Enzymatic Halogenation of Tryptophan on
a Gram Scale. Angew. Chem. Int. Ed. 2015, 54, 298–301.
(24)
Haynes, R. K.; Chan, W. C.; Wong, H. N.; Li, K. Y.; Wu, W. K.; Fan,
K. M.; Sung, H. H. Y.; Williams, I. D.; Prosperi, D.; Melato, S.;
ACS Paragon Plus Environment