276
MALDI MS peptide sequencing / J. Song, H.-J. Kim / Anal. Biochem. 423 (2012) 269–276
[15] Q. Fu, L.J. Li, De novo sequencing of neuropeptides using reductive isotopic
methylation and investigation of ESI QTOF MS/MS fragmentation pattern of
neuropeptides with N-terminal dimethylation, Anal. Chem. 77 (2005)
7783–7795.
between b- and y-ions facilitates de novo sequencing of peptides
whether the b-ions with the Br-tag were observed or not.
[16] T.Y. Samgina, S.V. Kovalev, V.A. Gorshkov, K.A. Artemenko, N.B. Poljakov, A.T.
Lebedev, N-terminal tagging strategy for de novo sequencing of short peptides
by ESI-MS/MS and MALDI-MS/MS, J. Am. Soc. Mass Spectrom. 21 (2010)
104–111.
[17] M. Yamaguchi, T. Nakazawa, H. Kuyama, T. Obama, E. Ando, T. Okamura, N.
Ueyama, S. Norioka, High-throughput method for N-terminal sequencing of
proteins by MALDI mass spectrometry, Anal. Chem. 77 (2005) 645–651.
[18] M. Yamaguchi, D. Nakayama, K. Shima, H. Kuyama, E. Ando, T. Okamura, N.
Ueyama, T. Nakazawa, S. Norioka, O. Nishimura, S. Tsunasawa, Selective
isolation of N-terminal peptides from proteins and their de novo sequencing by
matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
without regard to unblocking or blocking of N-terminal amino acids, Rapid
Commun. Mass Spectrom. 22 (2008) 3313–3319.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yohida, Protein and polymer
analyses up to m/z 100, 000 by laser ionization time-of-flight mass
spectrometry, Rapid Commun. Mass Spectrom. 2 (1988) 151–153.
[2] M. Karas, F. Hillenkamp, Laser desorption Ionization of proteins with molecular
masses exceeding 10000 daltons, Anal. Chem. 60 (1988) 2299–2301.
[3] J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse, Electrospray
ionization for mass-spectrometry of large biomolecules, Science 246 (1989)
64–71.
[4] A.K. Shukla, J.H. Futrell, Tandem mass spectrometry: dissociation of ions by
collisional activation, J. Mass Spectrom. 35 (2000) 1069–1090.
[5] J.E.P. Syka, J.J. Coon, M.J. Schroeder, J. Shabanowitz, D.F. Hunt, Peptide and
protein sequence analysis by electron transfer dissociation mass spectrometry,
in: Proc. Natl. Acad. Sci. USA, 101 (2004), pp. 9528–9533.
[6] R.A. Zubarev, N.L. Kelleher, F.W. McLafferty, Electron capture dissociation of
multiply charged protein cations. A nonergodic process, J. Am. Chem. Soc. 120
(1998) 3265–3266.
[7] S. Lee, G. Chung, J. Kim, H.B. Oh, Electron capture dissociation mass
spectrometry of peptide cations containing a lysine homologue: a mobile
proton model for explaining the observation of b-type product ions, Rapid
Commun. Mass Spectrom. 20 (2006) 3167–3175.
[19] F. Wang, H. Fu, Y.Y. Jiang, Y.F. Zhao, A picomole-scale method for rapid peptide
sequencing through convenient and efficient N-terminal phosphorylation and
electrospray ionization mass spectrometry, J. Am. Soc. Mass Spectrom. 17
(2006) 995–999.
[20] H. Kuyama, K. Sonomura, O. Nishimura, S. Tsunasawa,
A method for N-
terminal de novo sequence analysis of proteins by matrix-assisted laser
desorption/ionization mass spectrometry, Anal. Biochem. 380 (2008) 291–296.
[21] T.V. Minaeva, E.N. Danilovtseva, V.V. Annenkov, A.V. Novikov, A.L.
Vereshchagin, M.A. Grachev, A new bromine-containing reagent for cysteine
modification, Russ. J. Bioorg. Chem. 33 (2007) 549–553.
[22] W.M. Yue, Y.M. Koen, T.D. Williams, R.P. Hanzlik, Use of isotopic signatures for
mass spectral detection of protein adduction by chemically reactive
metabolites of bromobenzene: studies with model proteins, Chem. Res.
Toxicol. 18 (2005) 1748–1754.
[23] A. LeBlanc, T.C. Shiao, R. Roy, L. Sleno, Improved detection of reactive
metabolites with a bromine-containing glutathione analog using mass defect
and isotope pattern matching, Rapid Commun. Mass Spectrom. 24 (2010)
1241–1250.
[24] G. Ferenc, P. Padar, T. Janaky, Z. Szabo, G.K. Toth, L. Kovacs, Z. Kele, Capillary
electrophoresis tandem mass spectrometry of bromine-containing charged
derivatives of peptides, J. Chromatogr. A 1159 (2007) 119–124.
[25] M. Shin, H.J. Kim, Peptide C-terminal sequence analysis by MALDI-TOF MS
utilizing EDC coupling with Br signature, Bull. Korean Chem. Soc. 32 (2011)
1183–1186.
[8] T.Y. Kim, J.C. Schwartz, J.P. Reilly, Development of a linear ion trap/orthogonal-
time-of-flight mass spectrometer for time-dependent observation of product
ions by ultraviolet photodissociation of peptide ions, Anal. Chem. 81 (2009)
8809–8817.
[9] T. Keough, R.S. Youngquist, M.P. Lacey, A method for high-sensitivity peptide
sequencing using post source decay matrix-assisted laser desorption
ionization mass spectrometry, in: Proc. Natl. Acad. Sci. USA, 96 (1999), pp.
7131–7136.
[26] J.-S. Kim, M. Shin, J.-S. Song, S. An, H.-J. Kim, C-terminal de novo sequencing of
peptides using oxazolone-based derivatization with bromine signature, Anal.
Biochem. 419 (2011) 211–216.
[27] J.S. Kim, J. Kim, J.M. Oh, H.J. Kim, Tandem mass spectrometric method for
definitive localization of phosphorylation sites using bromine signature, Anal.
Biochem. 414 (2011) 294–296.
[28] J.-S. Kim, S.-U. Song, H.-J. Kim, Simultaneous identification of tyrosine
phosphorylation and sulfation sites utilizing tyrosine-specific bromination, J.
Am. Soc. Mass Spectrom. 22 (2011) 1916–1925.
[29] R. Wetzel, R. Halualani, J.T. Stults, C. Quan, A general method for highly
selective cross-linking of unprotected polypeptides via pH-controlled
[10] Y.H. Lee, H. Han, S.B. Chang, S.W. Lee, Isotope-coded N-terminal sulfonation of
peptides allows quantitative proteomic analysis with increased de novo
peptide sequencing capability, Rapid Commun. Mass Spectrom. 18 (2004)
3019–3027.
[11] Y.H. Lee, M.S. Kim, W.S. Choie, H.K. Min, S.W. Lee, Highly informative proteome
analysis by combining improved N-terminal sulfonation for de novo peptide
sequencing and online capillary reverse-phase liquid chromatography/tandem
mass spectrometry, Proteomics 4 (2004) 1684–1694.
[12] I.R. Leon, A.G.C. Neves-Ferreira, R.H. Valente, E.M. Mota, H.L. Lenzi, J. Perales,
Improved protein identification efficiency by mass spectrometry using N-
terminal chemical derivatization of peptides from Angiostrongylus
modification of N-terminal alpha-amino groups, Bioconjugate Chem.
(1990) 114–122.
1
costaricensis,
A nematode with unknown genome, J. Mass Spectrom. 42
(2007) 1363–1374.
[30] M.M. Ma, A. Paredes, D. Bong, Intra- and intermembrane pairwise molecular
recognition between synthetic hydrogen-bonding phospholipids, J. Am. Chem.
Soc. 130 (2008) 14456–14458.
[13] M.L. Hennrich, S. Mohammed, A.F.M. Altelaar, A.J.R. Heck, Dimethyl isotope
labeling assisted de novo peptide sequencing, J. Am. Soc. Mass Spectrom. 21
(2010) 1957–1965.
[14] R.L. Beardsley, L.A. Sharon, J.P. Reilly, Peptide de novo sequencing facilitated by
a dual-labeling strategy, Anal. Chem. 77 (2005) 6300–6309.