3028
A. V. Samet et al. / Tetrahedron Letters 52 (2011) 3026–3028
1,3-dioxolan-2-ylium cation D by attack of Clꢀ at the least steri-
cally hindered position16,17 (Scheme 5). Acidic hydrolysis of the
formate 4b affords chlorohydrin 5. The structure of 4b was con-
firmed by X-ray crystallographic analysis, the details of which will
be published elsewhere.
In conclusion, the carbohydrate ketone, levoglucosenone (1)
proved to be a suitable template for the stereoselective synthesis
of optically active functionalized 2H-chromenes via a domino
oxa-Michael–aldol reaction followed by transformation of the car-
bohydrate fragment under Beckmann fragmentation conditions.
7. (a) Shafizadeh, F.; Ward, D.; Pang, D. Carbohydr. Res. 1982, 102, 217; (b) Samet,
A. V.; Niyazymbetov, M. E.; Semenov, V. V.; Laikhter, A. L.; Evans, D. H. J. Org.
Chem. 1996, 61, 8786.
8. (a) Ward, D.; Shafizadeh, F. Carbohydr. Res. 1981, 95, 155; (b) Blake, A.; Cook, T.;
Forsyth, A.; Gould, R.; Paton, R. Tetrahedron 1992, 48, 8053.
9. For reviews, see Ref. 6 and also: (a) Miftakhov, M. S.; Valeev, F. A.; Gaisina, I. N.
Russ. Chem. Rev. 1994, 63, 869; (b) Witczak, Z. J. New Stereoselective
Functionalization of Cellulose-Derived Pyrolysis Derivatives: Levoglucosenone
and Its Dimer. In Materials, Chemicals, and Energy from Forest Biomass; ACS
Symposium Series 954; American Chemical Society: Washington, DC, 2007; pp
332–349; Some recent examples: (c) Nishikawa, T.; Urabe, D.; Isobe, M. Angew.
Chem., Int. Ed. 2004, 43, 4782; (d) Awad, L.; Demange, R.; Zhu, Y.-H.; Vogel, P.
Carbohydr. Res. 2006, 341, 1235; (e) Samet, A. V.; Shestopalov, A. M.; Lutov, D.
N.; Rodinovskaya, L. A.; Shestopalov, A. A.; Semenov, V. V. Tetrahedron:
Asymmetry 2007, 18, 1986; (f) Samet, A. V.; Lutov, D. N.; Konyushkin, L. D.;
Strelenko, Y. A.; Semenov, V. V. Tetrahedron: Asymmetry 2008, 19, 691; (g)
Sarotti, A. M.; Spanevello, R. A.; Suarez, A. G. Tetrahedron 2009, 65, 3502.
10. (a) Tietze, L. F. Chem. Rev. 1996, 96, 115; (b) Tietze, L. F.; Brasche, G.; Gericke K.
M. Domino Reactions in Organic Synthesis, Wiley, 2006.
Acknowledgements
This research was supported by a grant from Chemical Block Ltd
11. The 1H NMR spectra of compounds 2a and 2a0 (epimers at C-10a) differ mainly
in the coupling constant values J1,10a ꢂ 0 Hz for 2a and J1,10a = 5.2 Hz for 2a0 (cf.
Refs. 7b and 8b).
Supplementary data
12. Preparation of pyrano[3,4-b]chromen-4(3H)-ones 2a–d (general procedure). To a
solution of levoglucosenone (1) (0.63 g, 5 mmol) and the corresponding 2-
hydroxybenzaldehyde (5 mmol) in EtOH (3 ml), was added Et3N (0.10 g,
1 mmol) at rt. After 5 h (72 h for 2d) the resulting suspension was diluted
with H2O (3 ml) and the precipitate filtered and dried.
Supplementary data (experimental procedures for compounds
2a0, 3a,b and characterization data for all new compounds) associ-
ated with this article can be found, in the online version, at
13. Crystallographic data for 3b: C19H16O4S, Mr = 340.38, monoclinic, space group
P212121, a = 6.667(2), b = 7.903(3), c = 30.055(9) Å, V = 1583.5(9) Å3, Z = 4,
dcalcd = 1.428 gmꢀ3
,
l
= 2.225 mmꢀ1
,
F(0 0 0) = 712. Intensities of 8099
reflections were measured with a Bruker SMART APEX CCD diffractometer
[k(MoK ) = 0.71072 Å, -scans, h/2h < 56°] and 3784 independent reflections
References and notes
a
x
[Rint = 0.0348] were used for further refinement. The absorption correction was
performed empirically using APEX2 (Bruker, 2005). Analysis of Fourier density
synthesis revealed that the SPh substituent is disordered by two positions with
equal occupancies. The refinement converged to wR2 = 0.0531 and GOF = 1.000
for all independent reflections (R1 = 0.0749 was calculated against F for 3104
1. (a) Ellis, G. P. Chromenes, Chromanones, and Chromones. In The Chemistry of
Heterocyclic Compounds; Wiley: New York, 1977; Vol. 31, pp 11–139; (b)
Hepworth, J. D. Pyrans and Fused Pyrans. Synthesis and Applications. In
Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.;
Pergamon: Oxford, 1984; Vol. 3, pp 737–883; (c) Fravel, B.W. Pyrans and
their Benzo Derivatives: Applications. In Comprehensive Heterocyclic Chemistry
III; Katritzky, A. R., Ramsden, C. A., Scriven, E. V. F., Taylor, R. J. K., Eds.; Elsevier:
Oxford, Vol. 7, pp 701–726; (d) Brohmer, M. C.; Volz, N.; Bräse, S. Synlett 2009,
1383.
2. (a) Brimble, M. A.; Gibson, J. S.; Sperry, J. Pyrans and their Benzo Derivatives:
Synthesis. In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R., Ramsden,
C. A., Scriven, E. V. F., Taylor, R. J. K., Eds.; Elsevier: Oxford, Vol. 7, pp 419–699;
For a recent mini-review, see: (b) Shi, Y.-L.; Shi, M. Org. Biomol. Chem. 2007,
1499; For some recent examples, see: (c) Kaye, P. T.; Nocanda, X. W. J. Chem.
Soc., Perkin Trans. 1 2002, 1318; (d) Chen, Y. T.; Bannister, T. D.; Weiser, A.;
Griffin, E.; Lin, L.; Ruiz, C.; Cameron, M. D.; Schuerer, S.; Duckett, D.; Schroeter,
T.; LoGrasso, P.; Feng, Y. Bioorg. Med. Chem. Lett. 2008, 18, 6406; (e)
Behrenswerth, A.; Volz, N.; Toräng, J.; Hinz, S.; Bräse, S.; Müller, C. E. Bioorg.
Med. Chem. 2009, 17, 2842.
3. (a) Lesch, B.; Bräse, S. Angew. Chem., Int. Ed. 2004, 43, 115; (b) Ohnemueller, U.
K.; Nising, C. F.; Nieger, M.; Bräse, S. Eur. J. Org. Chem. 2006, 6, 1535.
4. (a) Sosnovskikh, V. Ya.; Korotaev, V. Yu.; Chizhov, D. L.; Kutyashev, I. B.;
Yachevskii, D. S.; Kazheva, O. N.; Dyachenko, O. A.; Charushin, V. N. J. Org. Chem.
2006, 71, 4538; (b) Xu, J.; Yang, C.; Wu, M.; Xie, Y. Heterocycles 2007, 73, 393.
5. (a) Rios, R.; Sunden, H.; Ibrahem, I.; Cordova, A. Tetrahedron Lett. 2007, 48,
2181; (b) Govender, T.; Hojabri, L.; Moghaddam, F. M.; Arvidsson, P. I.
Tetrahedron: Asymmetry 2006, 17, 1763; (c) Li, H.; Wang, J.; E-Nunu, T.; Zu,
L.; Jiang, W.; Wei, S.; Wang, W. Chem. Commun. 2007, 507.
6. (a) Witczak, Z. J. Ed. Levoglucosenone and Levoglucosans: Chemistry and
Applications; ATL Press: Mount Prospect, 1994.; (b) Witczak, Z. J.; Tatsuka, K.
Eds. Carbohydrate Synthons in Natural Products Chemistry. Synthesis,
Functionalization, and Applications. ACS Symposium Series 841; American
Chemical Society: Washington, DC, 2003.
observed reflections with I >2r(I)). The refinement of absolute structure led to
a Flack parameter (Flack, H.D. Acta Crystallogr., Sect. A 1983, 39, 876–881) equal
to 0.00(17). All calculations were performed using SHELXTL PLUS 5.0
(Sheldrick, G.M. Acta Crystallogr., Sect. A 2008, 64, 112–122). CCDC 799240
contains the supplementary crystallographic data for 3b. These data can be
(or from the CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK; fax: (+44) 1223
336033; or deposit@ccdc.cam.ac.uk.
14. Preparation of chromenes 4a–c (general procedure). A solution of ketone 2a–c
(2 mmol) and NH2OHꢁHCl (2.5 mmol) in pyridine (4 ml) was stirred for 24 h at
rt, the solvent removed in vacuo and the residue triturated with H2O (10 ml).
The resulting oxime precipitate was filtered, dried in vacuo and used in the
next step without further purification. To a solution of the above oxime in dry
CHCl3 (3 ml), a solution of SOCl2 (1.5 ml) in dry CHCl3 (1 ml) was added
dropwise at 0 °C with stirring. The resulting mixture was kept at 0 °C for
40 min and then evaporated to dryness. The residue was chromatographed on
silica gel (eluent: hexane/EtOAc, 5:1) to afford nitriles 4a–c.
15. Gawley, R. E. Org. React. 1988, 35, 1.
16. Ring opening of 1,3-dioxolan-2-ylium cations is well-documented: Pittman, C.
U., Jr.; McManus, S. P.; Larsen, J. W. Chem. Rev. 1972, 72, 357.
17. In contrast, levoglucosenone oxime was shown to undergo Beckmann
fragmentation under the action of SOCl2 affording 4-chloro-5-
(formyloxy)pent-2-enenitrile (thus, in this case Clꢀ evidently attacks the
more sterically hindered position of the intermediate cation): Valeev, F. A.;
Gorobets, E. V.; Tsypysheva, I. P.; Singizova, G. Sh.; Kalimullina, L. Kh.; Safarov,
M. G.; Shitikova, O. V.; Miftakhov, M. S. Chem. Nat. Compd. 2003, 39, 563.