Journal of the American Chemical Society
Page 8 of 11
R. M.; BorauꢁGarcia, J.; Valjus, J.; Roberts, C. J.; Tuononen, H.
Coordinate Iron−Hydride Complexes. J. Am. Chem. Soc. 2008,
130, 6624-6638.
16. Trovitch, R. J.,
M.; Parvez, M.; Roesler, R., Ammonia Activation by a Nickel
NCN-Pincer Complex featuring a Non-Innocent N-Heterocyclic
Carbene: Ammine and Amido Complexes in Equilibrium. Angew.
Chem. Int. Ed. 2015, 54, 6274-6277; (d) Kaplan, H. Z.; Li, B.;
Byers, J. A., Synthesis and Characterization of a Bis(imino)-N-
heterocyclic Carbene Analogue to Bis(imino)pyridine Iron
Complexes. Organometallics 2012, 31, 7343-7350.
1
2
3
4
5
6
7
8
J.;
Lobkovsky,
E.;
Chirik,
P.
Bis(diisopropylphosphino)pyridine Iron Dicarbonyl, Dihydride,
and Silyl Hydride Complexes. Inorg. Chem. 2006, 45, 7252-7260.
17. (a) Fuku-en, S.-i.; Yamamoto, J.; Kojima, S.; Yamamoto, Y.,
Synthesis and Application of New Dipyrido-Annulated N-
heterocyclic Carbene with Phosphorus Substituents. Chem. Lett.
2014, 43, 468-470; (b) Fuku-en, S.-i.; Yamamoto, J.; Minoura, M.;
Kojima, S.; Yamamoto, Y., Synthesis of New Dipyrido-Annulated
N-Heterocyclic Carbenes with Ortho Substituents. Inorg. Chem.
2013, 52, 11700-11702; (c) Gierz, V.; Seyboldt, A.; Maichle-
Moessmer, C.; Froehlich, R.; Rominger, F.; Kunz, D.,
Straightforward Synthesis of Dipyrido-Annelated NHC-
palladium(II) Complexes by Oxidative Addition. Eur. J. Inorg.
Chem. 2012, 2012, 1423-1429; (d) Nonnenmacher, M.; Kunz, D.;
Rominger, F., Synthesis and Catalytic Properties Of Rhodium(I)
and Copper(I) Complexes Bearing Dipyrido-Annulated N-
Heterocyclic Carbene Ligands. Organometallics 2008, 27, 1561-
1568; (e) Nonnenmacher, M.; Kunz, D.; Rominger, F.; Oeser, T.,
X-Ray Crystal Structures of 10 π - and 14 π -Electron Pyrido-
Annelated N-Heterocyclic Carbenes. Chem. Commun. 2006, 1378-
1380; (f) Nonnenmacher, M.; Kunz, D.; Rominger, F.; Oeser, T.,
First Examples of Dipyrido[1,2-C:2',1'-E]Imidazolin-7-Ylidenes
Serving as NHC-Ligands: Synthesis, Properties and Structural
Features of their Chromium and Tungsten Pentacarbonyl
Complexes. J. Organomet. Chem. 2005, 690, 5647-5653.
18. (a) Schremmer, C.; Cordes, C.; Klawitter, I.; Bergner, M.;
Schiewer, C. E.; Dechert, S.; Demeshko, S.; John, M.; Meyer, F.,
Spin-State Variations of Iron(III) Complexes with Tetracarbene
Macrocycles. Chem. Eur. J. 2019, 25, 3918-3929; (b) Schneider,
H.; Schmidt, D.; Eichhöfer, A.; Radius, M.; Weigend, F.; Radius,
U., Synthesis and Reactivity of NHC-Stabilized Iron(II)–Mesityl
Complexes. Eur. J. Inorg. Chem. 2017, 2017, 2600-2616; (c)
Liang, Q.; Janes, T.; Gjergji, X.; Song, D., Iron Complexes of a
Bidentate Picolyl-NHC Ligand: Synthesis, Structure and
Reactivity. Dalton Trans. 2016, 45, 13872-13880; (d) Ouyang, Z.;
Du, J.; Wang, L.; Kneebone, J. L.; Neidig, M. L.; Deng, L., Linear
and T-Shaped Iron(I) Complexes Supported by N-Heterocyclic
Carbene Ligands: Synthesis and Structure Characterization. Inorg.
Chem. 2015, 54, 8808-8816; (e) Zlatogorsky, S.; Muryn, C. A.;
Tuna, F.; Evans, D. J.; Ingleson, M. J., Synthesis, Structures, and
Reactivity of Chelating Bis-N-Heterocyclic-Carbene Complexes
of Iron(II). Organometallics 2011, 30, 4974-4982.
19. (a) Wiedner, E. S.; Chambers, M. B.; Pitman, C. L.; Bullock, R.
M.; Miller, A. J. M.; Appel, A. M., Thermodynamic Hydricity of
Transition Metal Hydrides. Chem. Rev. 2016, 116, 8655-8692; (b)
Wang, D.; Astruc, D., The Golden Age of Transfer Hydrogenation.
Chem. Rev. 2015, 115, 6621-6686; (c) Larionov, E.; Li, H.; Mazet,
C., Well-Defined Transition Metal Hydrides in Catalytic
Isomerizations. Chem. Commun. 2014, 50, 9816-9826; (d)
Pospech, J.; Fleischer, I.; Franke, R.; Buchholz, S.; Beller, M.,
Alternative Metals for Homogeneous Catalyzed Hydroformylation
Reactions. Angew. Chem. Int. Ed. 2013, 52, 2852-2872; (e) Recent
Advances in Hydride Chemistry. Peruzzini, M.; Poli, R., Eds.
Elsevier: Amsterdam, 2001; pp 1-578.
20. Trans-dihydride iron complexes lacking stabilizing carbonyl
ligands, readily reductively eliminate H2 when exposed to an
atmosphere N2. The resulting Fe(0) complexes are either (I)
inactive for HIE, see for example: Yu, R. P.; Darmon, J. M.;
Semproni, S. P.; Turner, Z. R.; Chirik, P. J., Synthesis of Iron
Hydride Complexes Relevant to Hydrogen Isotope Exchange in
Pharmaceuticals. Organometallics 2017, 36, 4341-4343; or (ii)
they are very sluggish catalysts for HIE exchange see: Corpas, J.;
Viereck, P.; Chirik, P. J., C(sp2)–H Activation with Pyridine
Dicarbene Iron Dialkyl Complexes: Hydrogen Isotope Exchange
of Arenes Using Benzene-d6 as a Deuterium Source. ACS Catal.
2020, 10, 8640-8647.
10. (a) Subramaniyan, V.; Dutta, B.; Govindaraj, A.; Mani, G., Facile
Synthesis of Pd(II) and Ni(II) Pincer Carbene Complexes by the
Double C–H Bond Activation of a New Hexahydropyrimidine-
Based Bis(Phosphine): Catalysis of C–N Couplings. Dalton Trans.
2019, 48, 7203-7210; (b) Sung, S.; Wang, Q.; Krämer, T.; Young,
R. D., Synthesis and Reactivity of a PCcarbeneP Cobalt(I)
Complex: The Missing Link in the Cobalt PXP Pincer Series (X =
B, C, N). Chem. Sci 2018, 9, 8234-8241; (c) Gutsulyak, D. V.;
Piers, W. E.; Borau-Garcia, J.; Parvez, M., Activation of Water,
Ammonia, and Other Small Molecules by PCcarbeneP Nickel
Pincer Complexes. J. Am. Chem. Soc. 2013, 135, 11776-11779; (d)
Steinke, T.; Shaw, B. K.; Jong, H.; Patrick, B. O.; Fryzuk, M. D.;
Green, J. C., Noninnocent Behavior of Ancillary Ligands:
Apparent Trans Coupling of a Saturated N-Heterocyclic Carbene
Unit with an Ethyl Ligand Mediated by Nickel. J. Am. Chem. Soc.
2009, 131, 10461-10466.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
11. Dröge, T.; Glorius, F., The Measure of All Rings—N-Heterocyclic
Carbenes. Angew. Chem. Int. Ed. 2010, 49, 6940-6952.
12. (a) Eizawa, A.; Arashiba, K.; Tanaka, H.; Kuriyama, S.; Matsuo,
Y.; Nakajima, K.; Yoshizawa, K.; Nishibayashi, Y., Remarkable
Catalytic Activity of Dinitrogen-Bridged Dimolybdenum
Complexes Bearing NHC-Based PCP-Pincer Ligands Toward
Nitrogen Fixation. Nat. Commun. 2017, 8, 14874; (b) Plikhta, A.;
Pöthig, A.; Herdtweck, E.; Rieger, B., Toward New
Organometallic Architectures: Synthesis of Carbene-Centered
Rhodium and Palladium Bisphosphine Complexes. Stability and
Reactivity of [PCBImPRh(L)][PF6] Pincers. Inorg. Chem. 2015,
54, 9517-9528.
13. Baker, T. M.; Mako, T. L.; Vasilopoulos, A.; Li, B.; Byers, J. A.;
Neidig, M. L., Magnetic Circular Dichroism and Density
Functional Theory Studies of Iron(II)-Pincer Complexes: Insight
into Electronic Structure and Bonding Effects of Pincer N-
Heterocyclic Carbene Moieties. Organometallics 2016, 35, 3692-
3700.
14. (a) Harris, C. F.; Kuehner, C. S.; Bacsa, J.; Soper, J. D.,
Photoinduced Cobalt(III)−Trifluoromethyl Bond Activation
Enables Arene C−H Trifluoromethylation. Angew. Chem. Int. Ed.
2018, 57, 1311-1315; (b) Manna, C. M.; Kaplan, H. Z.; Li, B.;
Byers, J. A., High Molecular Weight Poly(Lactic Acid) Produced
by an Efficient Iron Catalyst Bearing a Bis(Amidinato)-N-
Heterocyclic Carbene Ligand. Polyhedron 2014, 84, 160-167.
15. (a) Morris, R. H., Mechanisms of the H2- and Transfer
Hydrogenation of Polar Bonds Catalyzed by Iron Group Hydrides.
Dalton Trans. 2018, 47, 10809-10826; (b) Yu, R. P.; Darmon, J.
M.; Semproni, S. P.; Turner, Z. R.; Chirik, P. J., Synthesis of Iron
Hydride Complexes Relevant to Hydrogen Isotope Exchange in
Pharmaceuticals. Organometallics 2017, 36, 4341-4343; (c)
Gorgas, N.; Alves, L. G.; Stöger, B.; Martins, A. M.; Veiros, L. F.;
Kirchner, K., Stable, Yet Highly Reactive Nonclassical Iron(II)
Polyhydride Pincer Complexes: Z-Selective Dimerization and
Hydroboration of Terminal Alkynes. J. Am. Chem. Soc. 2017, 139,
8130-8133; (d) Gorgas, N.; Stöger, B.; Veiros, L. F.; Kirchner, K.,
Highly Efficient and Selective Hydrogenation of Aldehydes: A
Well-Defined Fe(II) Catalyst Exhibits Noble-Metal Activity. ACS
Catal. 2016, 6, 2664-2672; (e) Langer, R.; Diskin-Posner, Y.;
Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D., Low-
Pressure Hydrogenation of Carbon Dioxide Catalyzed by an Iron
Pincer Complex Exhibiting Noble Metal Activity. Angew. Chem.
Int. Ed. 2011, 50, 9948-9952; (f) Langer, R.; Leitus, G.; Ben-
David, Y.; Milstein, D., Efficient Hydrogenation of Ketones
Catalyzed by an Iron Pincer Complex. Angew. Chem. Int. Ed. 2011,
50, 2120-2124; (g) Yu, Y.; Sadique, A. R.; Smith, J. M.; Dugan, T.
R.; Cowley, R. E.; Brennessel, W. W.; Flaschenriem, C. J.; Bill, E.;
Cundari, T. R.; Holland, P. L., The Reactivity Patterns of Low-
21. (a) Parkin, G., Applications of Deuterium Isotope Effects for
Probing Aspects of Reactions Involving Oxidative Addition and
Reductive Elimination of H–H and C–H Bonds. J. Label. Compd.
Radiopharm. 2007, 50, 1088-1114; (b) Jones, W. D., Isotope
ACS Paragon Plus Environment