G. Arzamendi et al. / Journal of Catalysis 261 (2009) 50–59
59
were CO2 and H2O over all the catalysts considered in this study.
MnO2 and PdO were the most abundant species in the fresh cat-
alysts. XPS analysis performed on the samples used after reaction
revealed that whereas the oxidation state of Mn did not signif-
icantly change, both Pd0 and PdO coexisted in the palladium-
containing catalysts. In what concerns the combustion kinetics,
the classical first-order redox Mars–van Krevelen (MvK) mech-
anism and a Langmuir–Hinshelwood (LH) model assuming the
surface reaction between adsorbed MEK and oxygen as the rate-
determining step, have been considered. Both models satisfactorily
fitted the rates of CO2 formation obtained with the monometal-
lic PdOx/Al2O3 catalyst. In the case of the bimetallic Pd–Mn cat-
alysts, the MvK model provided the best fit. Irrespective of the
model, the kinetic parameters for the bimetallic catalysts were in-
between the values for the monometallic samples. The activation
energy and MEK enthalpy of adsorption were considerably lower
over PdOx than MnOx. The selectivity and kinetics of MEK com-
bustion over the bimetallic catalysts is dominated by an additive
rather than cooperative effect between palladium and manganese
species.
[11] G. Arzamendi, R. Ferrero, A.R. Pierna, L.M. Gandía, Ind. Eng. Chem. Res. 46
(2007) 9037.
[12] M.C. Álvarez-Galván, V.A. de la Peña O’Shea, J.L.G. Fierro, P.L. Arias, Catal. Com-
mun. 4 (2003) 223.
[13] M.C. Álvarez-Galván, B. Pawelec, V.A. de la Peña O’Shea, J.L.G. Fierro, P.L. Arias,
Appl. Catal. B: Environ. 51 (2004) 83.
[14] V.A. de la Peña O’Shea, M.C. Álvarez-Galván, J.L.G. Fierro, P.L. Arias, Appl. Catal.
B: Environ. 57 (2005) 191.
[15] V.A. de la Peña O’Shea, M.C. Álvarez-Galván, J. Requies, V.L. Barrio, P.L. Arias,
J.F. Cambra, M.B. Güemez, J.L.G. Fierro, Catal. Commun. 8 (2007) 1287.
[16] J. Requies, M.C. Álvarez-Galván, V.L. Barrio, P.L. Arias, J.F. Cambra, M.B. Güe-
mez, A. Manrique Carrera, V.A. de la Peña O’Shea, J.L.G. Fierro, Appl. Catal. B:
Environ. 79 (2008) 122.
[17] V.R. Galakhov, M. Demeter, S. Bartkowski, M. Neumann, N.A. Ovechkina, E.Z.
Kurmaev, N.I. Labachevskaya, Ya.M. Mukoskii, J. Mitchell, D.L. Ederer, Phys. Rev.
B 65 (2002) 113102.
[18] I. Barrio, I. Legórburu, M. Montes, M.I. Domínguez, M.A. Centeno, J.A. Odriozola,
Catal. Lett. 101 (2005) 151.
[19] M. Paulis, L.M. Gandía, A. Gil, J. Sambeth, J.A. Odriozola, M. Montes, Appl. Catal.
B: Environ. 26 (2000) 37.
[20] A. Gil, M.A. Vicente, J.-F. Lambert, L.M. Gandía, Catal. Today 68 (2001) 41.
[21] L.M. Gandía, M.A. Vicente, A. Gil, Appl. Catal. B: Environ. 38 (2002) 295.
[22] G. Busca, E. Finocchio, G. Ramis, G. Ricchiardi, Catal. Today 32 (1996) 133.
[23] M.P. Pina, S. Irusta, M. Menéndez, J. Santamaría, R. Hughes, N. Boag, Ind. Eng.
Chem. Res. 36 (1997) 4557.
[24] S. Irusta, M.P. Pina, M. Menéndez, J. Santamaría, J. Catal. 179 (1998) 400.
[25] M. Ai, J. Catal. 89 (1984) 413.
Acknowledgments
[26] Y. Takita, K. Inokuchi, O. Kobayashi, F. Hori, N. Yamazoe, T. Seiyama, J. Catal. 90
(1984) 232.
[27] Y. Takita, F. Hori, N. Yamazoe, T. Seiyama, Bull. Chem. Soc. Jpn. 60 (1987) 2757.
[28] E. McCullagh, J.B. McMonagle, B.K. Hodnett, Appl. Catal. A: Gen. 93 (1993) 203.
[29] E. McCullagh, N.C. Rigas, J.T. Gleaves, B.K. Hodnett, Appl. Catal. A: Gen. 95
(1993) 183.
G.A. and L.M.G. gratefully acknowledge the financial support for
this work provided by the Spanish Ministry of Science and In-
novation (MAT2006-12386-C05). M.C.A.-G. acknowledges financial
support from the MCYT in the Ramón y Cajal research program.
[30] E. McCullagh, N.C. Rigas, J.T. Gleaves, B.K. Hodnett, Stud. Surf. Sci. Catal. 82
(1994) 853.
References
[31] E. Finocchio, R.J. Willey, G. Busca, V. Lorenzelli, J. Chem. Soc., Faraday Trans. 93
(1997) 175.
[32] G. Busca, E. Finocchio, V. Lorenzelli, G. Ramis, M. Baldi, Catal. Today 49 (1999)
453.
[33] B.E. Hanson, L.F. Wieserman, G.W. Wagner, R.A. Kaufman, Langmuir 3 (1987)
549.
[34] V. Ermini, E. Finocchio, S. Sechi, G. Busca, S. Rossini, Appl. Catal. A: Gen. 190
(2000) 157.
[1] R.E. Hayes, S.T. Kolaczkowski, Introduction to Catalytic Combustion, Gordon and
Breach Science Publishers, Amsterdam, 1997, p. 1.
[2] B.K. Hodnett, Heterogeneous Catalytic Oxidation, John Wiley & Sons, Chichester,
2000, p. 189.
[3] R. Prasad, L.A. Kennedy, E. Ruckenstein, Catal. Rev.-Sci. Eng. 26 (1984) 1.
[4] J.J. Spivey, in: G.C. Bond, G. Webb (Eds.), Catalysis, vol. 8, The Royal Society of
Chemistry, Cambridge, 1989, p. 157.
[35] T. Yamaguchi, Y. Nakano, K. Tanabe, Bull. Chem. Soc. Jpn. 51 (1978) 2482.
[36] J.C. McManus, Y. Harano, M.J.D. Low, Can. J. Chem. 47 (1969) 2545.
[37] E. Finocchio, R.J. Willey, G. Ramis, G. Busca, V. Lorenzelli, Stud. Surf. Sci. Catal.
101 (1996) 483.
[5] M.F.M. Zwinkels, S.G. Järås, P.G. Menon, T.A. Griffin, Catal. Rev.-Sci. Eng. 35
(1993) 319.
[6] F. Duprat, Chem. Eng. Sci. 57 (2002) 901.
[7] G. Ware (Ed.), Reviews of Environmental Contamination and Toxicology,
vol. 103, Springer, Berlin, 1988, p. 165.
[38] J. Haber, Stud. Surf. Sci. Catal. 110 (1997) 1.
[8] J.C. Lou, C.L. Chen, Hazard. Waste Hazard. Mater. 12 (1995) 37.
[9] G. Picasso Escobar, A. Quintilla Beroy, M.P. Pina Iritia, J. Herguido Huerta, Chem.
Eng. J. 102 (2004) 107.
[39] C. Reed, Y. Xi, S.T. Oyama, J. Catal. 235 (2005) 378.
[40] M.A. Vannice, Catal. Today 123 (2007) 18.
[41] S. Imamura, Y. Tsuji, Y. Miyake, T. Ito, J. Catal. 151 (1995) 279.
[42] J.S. Park, D.S. Doh, K.-Y. Lee, Top. Catal. 10 (2000) 127.
[10] V.R. Choudary, G.M. Deshmukh, Chem. Eng. Sci. 60 (2005) 1575.