1686
trolytic manganese dioxide (EMD). However, mesoporous -MnO2
has an open-circuit voltage of ca. −0.04 V and a discharge plateau
at −0.42 V at a constant current of 50 mA g−1 (Fig. 6b). The dis-
charge capacity reaches 402.28 mAh g−1 to a cut-off voltage of
−1.0 V. In addition, the discharge plateaus of mesoporous -MnO2
decrease to −0.425 and −0.43 V when the constant currents are
increased to 250 and 500 mA g−1, respectively. Accordingly, their
and 100.23%, compared to the commercial electrolytic manganese
dioxide (EMD), at constant currents of 50, 250 and 500 mA g−1
respectively. Therefore, the ordered mesoporous MnO2 is
promising cathode material in alkaline Zn/MnO2 batteries. The
mesoporous structure may also provide a new approach for
improving the reactivity of the materials.
,
a
discharge capacities decrease to ca. 305.73 and 237.3 mAh g−1
,
Acknowledgment
respectively. Therefore, the discharge capacity of the mesoporous
-MnO2 increased by 63.58%, 95.14% and 100.23% at constant cur-
rents of 50, 250 and 500 mA g−1, respectively, compared to the
commercial electrolytic manganese dioxide (EMD).
We are grateful to the National Natural Science Foundation of
China (Grant No. 50904054) for financial support.
Davis et al. [30] concluded that high power MnO2 performance
is linked to both the BET area and the micropore area. The micro-
pore is associated with both high OCV and fast discharge kinetics,
i.e., with a high power capability, since a high micropore area is
a requirement for high power MnO2. In this paper, the synthe-
sized mesoporous MnO2 has a high micropore area. Therefore,
nanorods exhibits the highest open-circuit voltage, and the EMD
electrode exhibits the lowest.
References
[1] D. Linden, Handbook of Batteries, Mc-Graw Hill, New York, 1994 (Chapter 10).
[2] F.L. Tye, in: M. Barak (Ed.), Electrochemical Power Sources, Peter Peregrinus,
London, 1980, p. 50.
[3] A. Kozawa, J.F. Yeager, J. Electrochem. Soc. 115 (1968) 1003.
[4] Y. Chabre, J. Pannetie, Prog. Solid State Chem. 23 (1995) 1.
[5] F.Y. Cheng, J. Chen, X.L. Gou, P.W. Shen, Adv. Mater. 17 (2005) 2753.
[6] A.P. Malloy, G.J. Browning, S.W. Donne, J. Colloid Interface Sci. 285 (2005)
653.
[7] X. Wang, Y.D. Li, Chem. Commun. 7 (2002) 764.
[8] X. Wang, Y.D. Li, J. Am. Chem. Soc. 124 (2002) 2880.
are the rate-determining steps [31,4]. The designed mesoporous
structure can provide a larger specific area, leading to a higher
current density and a thin pore wall, which reduces the ionic dif-
fusion path [32]. Furthermore, since water is a reactant in this
process, its availability in a water-poor environment is crucial for
a high discharge rate [5]. The mesoporous structure facilitates the
fast transport of water from one cell region to another. Therefore,
compared to the EMD, the mesoporous MnO2 exhibits better dis-
charge performance. In addition, the mesoporous MnO2 nanorods
are characterized by a 2D hexagonal (p6m) structure, while the
mesoporous -MnO2 is characterized by the Ia3d cubic structure,
and the mesoporous MnO2 nanorods exhibit better discharge per-
formance than the mesoporous -MnO2.
[9] Y. Xiong, Y. Xie, Z. Li, C. Wu, Chem. Eur. J. 9 (2003) 1645.
[10] C.Z. Wu, Y. Xie, D. Wang, J. Yang, T.W. Li, J. Phys. Chem. B 107 (2003) 13583.
[11] Z.Y. Yuan, Z. Zhang, G. Du, T.Z. Ren, B.L. Su, Chem. Phys. Lett. 378 (2003) 349.
[12] V. Subramaniam, H.W. Zhu, R. Vajtai, P.M. Ajayan, B.Q. Wei, J. Phys. Chem. B109
(2005) 20207.
[13] F.Y. Cheng, J.Z. Zhao, W.E. Song, C.S. Li, H. Ma, J. Chen, P.W. Shen, Inorg. Chem.
45 (2006) 2038.
[14] M. Sugantha, P.A. Ramakrishana, A.M. Hermann, C.P. Warmsingh, D.S. Ginley,
Int. J. Hydrogen Energy 28 (2003) 597.
[15] D. Tench, L.F. Warren, J. Electrochem. Soc. 130 (1983) 869.
[16] G.J. Moore, R. Portal, A.L.G. La Salle, D. Guyomard, J. Power Sources 97–89 (2001)
393.
[17] M. Ghaemi, Z. Biglari, L. Binder, J. Power Sources 102 (2001) 29.
[18] C.C. Hu, C.C. Wang, J. Electrochem. Soc. 15A (2003) 1079.
[19] C.C. Hu, T.W. Tsou, Electrochim. Acta 47 (2002) 3523.
[20] M.S. Wu, Appl. Phys. Lett. 87 (2005) 153102.
[21] M.S. Wu, J.T. Lee, Y.Y. Wang, C.C. Wa1n, J. Phys. Chem. B 108 (2004) 16331.
[22] K. Katakura, S. Nishimura, Z. Ogumi, J. Power Sources 146 (2005) 217.
[23] M. Ghaemi, L. Khosravi-Fard, J. Neshati, J. Power Sources 141 (2005) 340.
[24] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky,
Science 279 (1998) 548.
[25] F. Kleita, S.H. Choi, R. Ryoo, Chem. Commun. 17 (2003) 2136.
[26] T.W. Kim, F. Kleita, B. Paul, R. Ryoo, J. Am. Chem. Soc. 127 (2005) 7601.
[27] N. Kijima, H.J. Klabunde, P.M.A. Sherwood, J. Am. Chem. Soc. 113 (1991) 855.
[28] M. Ghaemi, A. Gholami, R.B. Moghaddam, Electrochem. Acta 53 (2008) 3250.
[29] X. Xia, C. Zhang, Z. Guo, Z. Liu, G. Walter, J. Power Sources 109 (2002) 11.
[30] S.M. Davis, W.L. Bowden, T.C. Richards, J. Power Sources 139 (2005) 342.
[31] A. Kozawa, J.F. Yeager, J. Electrochem. Soc. 115 (1998) 1003.
[32] J.Y. Luo, J.J. Zhang, Y.Y. Xia, Chem. Mater. 18 (2006) 5618.
4. Conclusion
In summary, two types of mesoporous MnO2 were successfully
synthesized. Electrochemical measurements of alkaline Zn/MnO2
battery showed that the discharge capacity of the mesoporous
MnO2 nanorods increased by 74.98%, 119.74% and 146.19% and
that of the mesoporous -MnO2 increased by 63.58%, 95.14%