116
F. Hajlaoui et al. / Journal of Organometallic Chemistry 700 (2012) 110e116
)2 anions that
ꢀ
Acknowledgment
in a bidentate fashion. In contrast, the six (SO
4
2þ
coordinate to each [M(H
compounds 3e8 include two (SO
2 6
O) ]
(M ¼ Fe, Ni, Co) cation in
2
ꢀ
4
)
anions that accept just
Grateful thanks are expressed to Dr. T. Roisnel (Centre de Dif-
fractométrie X, Université de Rennes I) for the assistance in single-
crystal X-ray diffraction data collection. A.J.N. acknowledges the
Henry Dreyfus Teacher-Scholar Awards program.
a single hydrogen bond from the cation. See Figs. 3 and 4. This
change in the hydrogen-bonding structure affects the three-
dimensional packings of the compounds. Indeed, Compounds 1 and
2
adopt a distinctly different packing arrangement with respect to
compounds 3e8. See Figs. 1 and 2. Both differences can be attrib-
uted to a gradual decrease in the ionic radius of the metal as one
Appendix A. Supplementary material
move from Mn to Ni. Compounds 1 and 2 contain the largest
CCDC 823970e823977; contain the supplementary crystallo-
graphic data for tables of hydrogen bond details for all compounds.
II
transition metal cations, Mn , from which the longest MeO
are observed, see Table 2. In these compounds, six (SO )
4
w
bonds
ꢀ
anions
2
are able to fit around each cation. As the ionic radius of the metal
centers decrease in Fe, Co and Ni, a corresponding decrease in
2
þ
MeO
become smaller, the six (SO
the same hydrogen-bonding structure and a shift in connectivity is
w
bond lengths is observed. As the [M(H
2
O)
ꢀ
anions are no longer able to adopt
6
]
cations
2
4
)
References
2
þ
observed. This correlation between [M(H
2
O)
6
]
cation size and
[1] W. Rekik, H. Naïli, T. Bataille, T. Roisnel, T. Mhiri, Inorg. Chim. Acta 359 (2006)
3954e3962.
three-dimensional packing is also manifested in the distances
between neighboring cations. While two short Mn/Mn distances
of 6.627(3) Å are observed in both compounds 1 and 2, the other
eight Mn/Mn distances are significantly larger, at distances of
[
[
2] H. Naïli, W. Rekik, T. Bataille, T. Mhiri, Polyhedron 25 (2006) 3543e3554.
3] W. Rekik, H. Naïli, T. Bataille, T. Mhiri, J. Organomet. Chem. 691 (2006)
4725e4732.
[
[
4] F. Hajlaoui, S. Yahyaoui, H. Naïli, T. Mhiri, T. Bataille, Polyhedron 28 (2009)
2113e2118.
5] F. Hajlaoui, S. Yahyaoui, H. Naïli, T. Mhiri, T. Bataille, Inorg. Chim. Acta 363
(2010) 691e695.
2
þ
approximately 8.5 or 9.5 Å. In contrast, the [M(H
2
O)
6
]
(M ¼ Fe, Co,
Ni) exhibit both fewer, and, on average shorter M/M distances.
2
þ
Each [M(H
2
O)
6
]
(M ¼ Fe, Co, Ni) cation has six nearest neighbors
[6] Y. Xing, Y. Liu, Z. Shi, H. Meng, W. Pang, J. Solid State Chem. 174 (2003)
81e385.
7] J.R. Gutnick, E.A. Muller, A. Narducci Sarjeant, A.J. Norquist, Inorg. Chem. 43
2004) 6528e6530.
[8] M. Doran, A.J. Norquist, D. O’Hare, Chem. Commun. (2002) 2946e2947.
3
at distances of approximately 7.03, 7.09 and 7.85 Å. This clearly
indicates the role of cation size in the determination of the supra-
molecular structure.
[
(
[9] E.A. Muller, R.J. Cannon, A.N. Sarjeant, K.M. Ok, P.S. Halasyamani, A.J. Norquist,
In compounds 1e8, the SeO distances range from 1.462(2) to
Cryst. Growth Des 5 (2005) 1913e1917.
1.481(2) Å with an average of 1.471(1) Å. Slight differences in the
[10] C.N.R. Rao, E.V. Sampathkumaran, R. Nagarajan, G. Paul, J.N. Bahera,
SeO bond lengths together with the slight deformation of the
anions reflect the how the ionic radii of the M cations affects the
A. Choudhury, J. Mater. Chem. 16 (2004) 1441e1446.
[11] L.F. Kirpichnikova, L.A. Shuvalov, N.R. Ivanov, B.N. Prasolov, E.F. Andreyev,
II
Ferroelectrics 96 (1989) 313e317.
supramolecular structures. The chemical formula of these materials
resembles that of the Tutton’s salts [30e33]. Indeed, although
replacing monovalent metals by divalent organic cations, there are
strong similarities between the two families, with difference
resulting from the size, shape and charge of the amino group
involved in the present structures.
[
12] A. Pietraszko, K. Lukaszewicz, L.F. Kirpichnikova, Polish J. Chem. 67 (1993)
1877e1884.
[13] P.S. Halasyamani, K.R. Poeppelmeier, Chem. Mater. 10 (1998) 2753e2769.
[14] C. Chen, G. Liu, Annu. Rev. Mater. Sci. 16 (1986) 203e243.
[15] P.S. Halasyamani, Chem. Mater. 16 (2004) 3586e3592.
[16] O.R. Evans, W. Lin, Acc. Chem. Res. 35 (2002) 511e522.
[17] T.R. Veltman, A.K. Stover, A.N. Sarjeant, K.M. Ok, P.S. Halasyamani,
A.J. Norquist, Inorg. Chem. 45 (2006) 5529e5537.
[
[
The thermogravimetric analysis (DTA-TG) curves for compounds
18] K. Lii, C.-Y. Chen, Inorg. Chem. 39 (2000) 3374e3378.
19] E.C. Glor, S.M. Blau, J. Yeon, M. Zeller, P.S. Halasyamani, J. Schrier, A.J. Norquist,
J. Solid State Chem. 184 (2011) 1445e1450.
1
e8 show that there are similar changes in the decomposition of
precursors with somewhat small differences, which could be
associated with the structural variations. Specifically, the dehy-
dration temperatures are affected by both the strengths and
topologies of the extensive hydrogen-bonding structures.
[20] D. Hagrman, R.P. Hammond, R. Haushalter, J. Zubieta, Chem. Mater. 10 (1998)
2091e2100.
[21] O.R. Evans, W. Lin, Acc. Chem. Res. 35 (2002) 511e522.
[22] B. Moulton, M.J. Zaworotko, Chem. Rev. 101 (2001) 1629e1658.
[23] Kappa Nonius, CCD Program Software, Nonius BV, Delft, the Netherlands,
998.
1
5
. Conclusion
[24] Z. Otwinowski, W. Minor, C.W. Carter, R.M. Sweet, Methods in Enzymology,
vol. 276, Academic Press, New York, 1997, 307.
[
[
[
25] J. De Meulenaer, H. Tompa, Acta Crystallogr. 19 (1965) 1014e1018.
26] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837e838.
27] G.M. Sheldrick, SHELXS-97, Programs for Crystal Structure Solution, Univer-
sity of Gottingen, Germany, 1997.
28] G.M. Sheldrick, SHELXL-97, Programs for Crystal Structure Refinement,
University of Gottingen, Germany, 1997.
29] K. Brandenburg, Diamond version 2.0 Impact GbR, Bonn Germany, 1998.
The use of chiral amines is an effective method for the prepa-
ration of new noncentrosymmetric organiceinorganic hybrid
materials. These directed syntheses resulted in the formation of
eight noncentrosymmetric metal sulfate compounds using a chiral
source of 2-methylpiperazine, either R-2-methylpiperazine or S-2-
methylpiperazine. The crystal structures consist of isolated entities
linked by hydrogen bonds only, namely, two anionic sulfate
[
[
[30] T. Bataille, Acta Crystallogr. C59 (2003) m459em461.
[31] M. Fleck, L. Bohaty, E. Tillmanns, SolidState Sci. 6 (2004) 469e477.
[32] S. Yahyaoui, W. Rekik, H. Naïli, T. Mhiri, T. Bataille, J. Solid State Chem. 180
2
þ
groups,a chiral source of [C
5
H
14
N
2
]
and bivalent transition metal
(2007) 3560.
II
II
2þ
,
surrounded by six water molecules [M (H
2
O)
6
], with (M ¼ Mn
[33] P. Held, Acta Crystallogr. E59 (2003) m197em198.
[34] M. Ghadermazi, H. Aghabozorgb, S. Sheshmani, Acta Cryst E63 (2007)
m1919.
2
þ
2þ
2þ
Fe , Co and Ni ) playing the role of cations. The hydrogen-
bonding plays an important role in the formation of this kind of
materials. The facile formation of high quality noncentrosymmetric
single crystals makes them potential candidates for future practical
applications. The thermal behaviour of the precursors, as studies by
TG-DTA, is shown to be dependent not only on the structure type
but also on the transition metal atom involved in the structure.
[
[
35] Z.-W. Xu, Y.-L. Fu, J.-L. Ren, Acta Cryst E62 (2006) m161em162.
36] W. Rekik, H. Naïli, T. Mhiri, T. Bataille, J. Chem. Crystallogr. 37 (2007)
147e155.
[
[
37] I.D. Brown, J. Appl. Crystallogr. 29 (1996) 479e480.
38] S.J. Choyke, S.M. Blau, A.A. Larner, S.A. Narducci, J. Yeon, P.S. Halasyamani,
A.J. Norquist, Inorg. Chem. 48 (2009) 11277e11282.
[39] A.L.J. Spek, Appl. Crystallogr. 36 (2003) 7e13.