Synthesis of 5-substituted 1H-tetrazoles catalysed by NiFe2O4
General procedure for preparation of 5-substituted 1H-
Acknowledgment
tetrazole
We gratefully acknowledge the funding support received for this
project from Malek-ashtar University of Technology (MUT), Islamic
Republic of Iran.
In a round-bottom flask equipped with a condenser for refluxing
and a magnetic stirring bar, aryl/heteroaryl cyanide (1 mmol),
sodium azide (1.3 mmol), ammonium acetate (1 mmol), nickel
ferrite nanoparticles (5 mol%) and DMF (3 mL) were added
and heated at 100°C under air atmosphere. The mixture was
vigorously stirred under these reaction conditions and reaction
completion was monitored using TLC (EtOAc–n-hexane, 75:25).
After completion of the reaction, the catalyst was separated
from the reaction mixture with an external magnet and the
reaction mixture was treated with ethyl acetate (10 ml). The
organic layer was treated with HCl (10 ml, 5 N) and stirred
vigorously. The resultant organic layer was separated, and the
aqueous layer was again extracted with ethyl acetate (10 ml).
The combined organic layers were washed with water, dried
over anhydrous magnesium sulfate and concentrated under
reduced pressure using a rotary evaporator to give the crude solid
crystalline 5-substituted 1H-tetrazole. The crude solid product was
purified using silica gel column chromatography (EtOAc–n-hexane,
75:25).
References
[1] R. N. Butler, in Comprehensive Heterocyclic Chemistry II, Vol. 4 (Eds.: A. R.
Katritzky, C. W. Rees, E. F. V. Scriven), Pergamon, Oxford, 1996.
[2] P. N. Gaponik, S. V. Voitekhovich, O. A. Ivashkevich, Russ. J. Chem. Rev.
2006, 75, 507.
[3] R. C. Tuites, T. E. Whiteley, L. M. Minsk, US Patent 1,245,614, 1971.
[4] A. Xie, M. Cao, Y. Liu, L. Feng, X. Hu, W. Dong, Eur. J. Org. Chem. 2014,
436.
[5] a) E. Makino, N. Iwasaki, N. Yagi, H. Kato, Y. Ito, H. Azuma, Chem. Pharm.
Bull. 1990, 38, 201; b) S. J. Wittenberger, Org. Prep. Proced. Int. 1994, 26,
499; c) M. Uchida, M. Komatsu, S. Morita, T. Kanbe, K. Nagakawa, Chem.
Pharm. Bull. 1989, 37, 322; d) S. Wu, A. Fluxe, J. Sheffer, J. M. Janusz,
B. E. Blass, R. White, C. Jackson, R. Hedges, M. Muawsky, B. Fang,
G. M. Fadayel, M. Hare, L. Djandjighian, Bioorg. Med. Chem. Lett. 2006,
16, 6213; e) C. T. Alabaster, A. S. Bell, S. F. Campbell, P. Ellis,
C. G. Henderson, D. S. Morris, D. A. Roberts, K. S. Ruddock,
G. M. R. Samuels, M. H. Stefaniak, J. Med. Chem. 1989, 32, 575; f)
C. Liljebris, S. D. Larsen, D. Ogg, B. J. Palazuk, J. E. Bleasdale, J. Med.
Chem. 2002, 45, 1785; g) K. J. Wirth, T. Paehler, B. Rosenstein,
K. Knobloch, T. Maier, J. Frenzel, J. Brendel, A. E. Busch, M. Bleich,
Cardiovasc. Res. 2003, 60, 298; h) F. Ahmad, J. L. Azevedo, R. Cortright,
G. L. Dohm, B. J. Goldstein, J. Clin. Invest. 1997, 100, 449.
[6] P. B. Mohite, V. H. Bhaskar, Int. J. PharmTech Res. 2011, 3, 1557.
[7] V. Rama, K. Kanagaraj, K. Pitchumani, J. Org. Chem. 2011, 76, 9090.
[8] R. Welz, S. Muller, Tetrahedron Lett. 2002, 43, 795.
All synthesized tetrazoles were characterized using spectral
data (FT-IR, H NMR and 13C NMR) and melting points and com-
1
paring them with authentic samples.[4,7,33,40] The FT-IR spectra of
synthesized compounds showed a sharp absorption at 3421
cmꢁ1 (N–H), a group of bands at 1455 (C–H), 1285 (N–N¼N–),
1208, 1120 and 1048 cmꢁ1 caused by the presence of secondary
amino group and tetrazole ring, and the absence of a band at
2200 cmꢁ1 of the CN group. For example, the spectroscopic data
for some products are presented in the following.
[9] A. Hantzsch, A. Vagt, Justus Liebig’s Ann. Chem. 1901, 314, 339.
[10] O. G. Mancheño, C. Bolm, Org. Lett. 2007, 9, 2951.
[11] Y. Zhu, Y. Ren, C. Cai, Helv. Chim. Acta 2009, 92, 171.
[12] D. Amantini, R. Beleggia, F. Fringuelli, F. Pizzo, L. Vaccoro, J. Org. Chem.
2004, 69, 2896.
5-Phenyl-1H-tetrazole (Table 2, entry 1). White solid; m.p.
1
215–216°C. H NMR (500 MHz, DMSO-d6, δ, ppm): 8.12–7.59 (m,
2H, Ph), 7.53–7.51 (m, 3H, Ph), 3.92 (br, 1H, N–H). 13C NMR (125
MHz, DMSO-d6, δ, ppm): 154.8 (tetrazole ring), 131.2 (Ph), 130.0
(Ph), 127.1 (Ph), 124.2 (Ph). FT-IR (KBr, cmꢁ1): 3426, 3130, 3055,
2980, 2915, 2840, 2688, 2598, 1608, 1565, 1486, 1409, 1255,
1164, 1056, 991, 790, 725.
[13] T. Jin, F. Kitahara, S. Kamjio, Y. Yamamoto, Tetrahedron Lett. 2008, 49,
2824.
[14] A. Kumar, R. Narayanan, H. Shechter, J. Org. Chem. 1996, 61, 4462.
[15] W. K. Su, Z. Hong, W. G. Shan, X. X. Zhang, Eur. J. Org. Chem. 2006, 2723.
[16] S. Hajra, D. Sinha, M. Bhowmick, J. Org. Chem. 2007, 72, 1852.
[17] D. P. Matthews, J. E. Green, A. J. Shuker, J. Comb. Chem. 2000, 2, 19.
[18] B. Akhlaghinia, S. Rezazadeh, J. Braz. Chem. Soc. 2012, 23, 2197.
[19] Y. S. Gyoung, J. G. Shim, Y. Yamamoto, Tetrahedron Lett. 2000, 41, 4193.
[20] Y. Yao, Y. Zhou, B. Lin, C. Yao, Tetrahedron Lett. 2013, 54, 6779.
[21] M. Nasrollahzadeh, Y. Bayat, D. Habibi, S. Moshaee, Tetrahedron Lett.
2009, 50, 4435.
[22] L. Lang, B. Li, W. Liu, L. Jiang, Z. Xu, G. Yin, Chem. Commun. 2010, 46,
448.
[23] G. Aridoss, K. K. Laali, Eur. J. Org. Chem. 2011, 6343.
[24] M. Lakshmi Kantam, K. B. Shiv Kumar, K. Phani Raja, J. Mol. Catal. A
2006, 247, 186.
[25] G. Venkateshwarlu, K. C. Rajanna, P. K. Saiprakash, Synth. Commun.
2009, 39, 426.
[26] M. Laxmi Kantam, V. Balasubramanyam, K. B. Shiva Kumar, Synth.
Commun. 2006, 36, 1809.
[27] G. Venkateshwarlu, A. Premalatha, K. C. Rajanna, P. K. Saiprakash, Synth.
Commun. 2009, 39, 4479.
[28] J. He, B. Li, F. Chen, Z. Xu, G. Yin, J. Mol. Catal. A 2009, 304, 135.
[29] G. Qi, Y. Dai, Chin. Chem. Lett. 2010, 21, 1029.
5-(4-Tolyl)tetrazole (Table 2, entry 6). White solid; m.p.
248–250°C. H NMR (500 MHz, DMSO-d6, δ, ppm): 7.93 (d, J = 9.0
1
Hz, 2H, Ph), 7.42 (d, J = 9.6 Hz, 2H, Ph), 3.35 (br, 1H, N–H), 2.4
(s, 3H, CH3). 13C NMR (125 MHz, DMSO-d6, δ, ppm): 155.0 (tetrazole
ring), 139.2 (Ph), 130.0 (Ph), 126.8 (Ph), 121.6 (Ph), 21.3 (CH3). FT-IR
(KBr, cmꢁ1): 3413, 3095, 3067, 2964, 2909, 2850, 1610, 1488, 1435,
1259, 1159, 1093, 1017, 871, 804.
4-(1H-Tetrazole-5-yl)benzonitrile (Table 2, entry 8). White solid;
m.p. 258–260°C. 1H NMR (500 MHz, DMSO-d6, δ, ppm): 8.21
(d, J = 9.9 Hz, 2H, Ph), 8.08 (d, J = 9.0 Hz, 2H, Ph). 13C NMR
(125 MHz, DMSO-d6, δ, ppm): 161.0 (tetrazole ring), 135.2 (Ph),
134.1 (Ph), 131.0 (Ph), 126.9 (CN), 115.3 (Ph). FT-IR (KBr, cmꢁ1):
3430, 3144, 3089, 3024, 2925, 2854, 2233, 1653, 1494, 1437, 1387,
1275, 1212, 1162, 1064, 995, 851, 746.
[30] M. Nasrollahzadeh, D. Habibi, Z. Shahkarami, Y. Bayat, Tetrahedron
2009, 65, 10715.
[31] S. M. Agawane, J. M. Nagarkar, Catal. Sci. Technol. 2012, 2, 1324.
[32] B. Sreedhar, A. Suresh Kumar, D. Yada, Tetrahedron Lett. 2011, 52, 3565.
[33] A. Teimouri, A. R. Najafi Chermahini, Polyhedron 2011, 30, 2606.
[34] S. Takale, S. Manave, K. Phatangare, V. Padalkar, N. Darvatkar,
A. Chaskar, Synth. Commun. 2012, 42, 2375.
[35] R. Shelkar, A. Singh, J. Nagarkar, Tetrahedron Lett. 2013, 54, 106.
[36] G. A. Meshram, S. S. Deshpande, P. A. Wagh, V. A. Vala, Tetrahedron Lett.
2014, 55, 3557.
Conclusions
We report that nanonickel ferrite is an effective heterogeneous
catalyst for the [2 + 3] cycloaddition of azide with a wide variety
of nitriles to form 5-substituted 1H-tetrazoles with good to excellent
yields. This catalyst can be separated and recovered easily from the
reaction solution and can be reused for at least five consecutive
runs without obvious loss in catalytic activity.
[37] M. Aliahmad, M. Noori, Indian J. Phys. 2013, 87, 431.
[38] A. Pui, D. Gherca, G. Carja, Dig. J. Nanomater. Biostruct. 2011, 6, 1783.
Appl. Organometal. Chem. (2015)
Copyright © 2015 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc