Page 5 of 6
Journal of the American Chemical Society
Casalnuovo, A. L. Tailored ligands for asymmetric
(14) Guin, J.; Varseev, G.; List, B. Catalytic Asymmetric
Protonation of Silyl Ketene Imines. J. Am. Chem. Soc.
2013, 135, 2100–2103.
1
2
3
4
5
6
7
8
catalysis: the hydrocyanation of vinyl arenes. J. Am. Chem.
Soc. 1992, 114, 6265–6266. (c) Casalnuovo, A. L.;
RajanBabu, T. V.; Ayers, T. A.; Warren, T. H. Ligand
Electronic Effects in Asymmetric Catalysis: Enhanced
Enantioselectivity in the Asymmetric Hydrocyanation of
Vinylarenes. J. Am. Chem. Soc. 1994, 116, 9869–9882. (d)
RajanBabu, T. V.; Casalnuovo, A. L. Role of Electronic
Asymmetry in the Design of New Ligands: The
Asymmetric Hydrocyanation Reaction. J. Am. Chem. Soc.
1994, 118, 6325–6326. (e) Yan, M.; Xu, Q.-Y.; Chan, A.
S. C. Asymmetric hydrocyanation of olefins catalyzed by
chiral diphosphite–nickel complexes. Tetrahedron:
Asymmetry 2000, 11, 845–849. (f) Wilting, J.; Janssen, M.;
Müller, C.; Vogt, D. The Enantioselective Step in the
Nickel-Catalyzed Hydrocyanation of 1,3-cyclohexadiene.
J. Am. Chem. Soc. 2006, 128, 11374–11375. (g) Saha, B.;
RajanBabu, T. V. Nickel(0)-Catalyzed Asymmetric
Hydrocyanation of 1,3-Dienes. Org. Lett. 2006, 8, 4657–
4659. (h) Falk, A.; Göderz, A.-L.; Schmalz, H.-G.
Enantioselective Nickel-Catalyzed Hydrocyanation of
Vinylarenes Using Chiral Phosphine-Phosphite Ligands
and TMS-CN as a Source of HCN. Angew. Chem. Int. Ed.
2013, 52, 1576–1580. (i) Falk, A.; Cavalieri, A.; Nichol,
G. S.; Vogt, D.; Schmalz, H.-G. Enantioselective nickel-
catalyzed hydrocyanation using chiral phosphine-
phosphite ligands: recent improvements and insights. Adv.
Synth. Catal. 2015, 357, 3317–3320.
(8) For general reviews on asymmetric cyanation
reactions, see: (a) Khan, N.-U.; Kureshy, R. I.; Abdi, S. H.
R.; Agrawal, S.; Jasra, R. V. Metal catalyzed asymmetric
cyanation reactions. Coord. Chem. Rev. 2008, 252, 593–
623. (b) Kurono, N.; Ohkuma, T. Catalytic Asymmetric
Cyanation Reactions. ACS Catal. 2016, 6, 989–1023.
(9) Romeder, G. Hydrogen Cyanide. e-EROS
Encyclopedia of Reagents for Organic Synthesis. 2001.
(10) In the process of preparing our manuscript a
complementary electrochemical approach to asymmetric
olefin hydrocyanation was described, see: Lu, S.; Fu, N.;
Ernst, B. G.; Lee, W.-H.; Frederick, M. O.; DiStasio, R.
A.; Lin, S. Dual Electrocatalysis Enabled Enantioselective
Hydrocyanation of Conjugated Alkenes. ChemRxiv
Preprint, 2019, DOI: 10.26434/chemrxiv.9784625.v1.
(11) For a recent example of formal asymmetric olefin
hydrocyanation, see: Li, X.; Yang, J.; Li, S.; Zhang, D.; Lv,
H.; Zhang, X. Asymmetric Hydrocyanation of Alkenes
without HCN. Angew. Chem. Int. Ed. 2019, 58, 10828–
10931.
(15) For selected additional indirect approaches to access
enantioenriched nitriles, see: (a) Enders, D.; Plant, A.;
Backhaus, D.; Reinhold, U. Asymmetric synthesis of α-
substituted nitriles and cyanohydrins by oxidative cleavage
of chiral aldehyde hydrazones with magnesium
monoperoxyphthalate. Tetrahedron 1995, 51, 10699–
10714. (b) Betke, T.; Rommelmann, P.; Oike, K.; Asano,
Y.; Gröger, H. Cyanide-Free and Broadly Applicable
Enantioselective Synthetic Platform for Chiral Nitriles
through a Biocatalytic Approach. Angew. Chem. Int. Ed.
2017, 56, 12361–12366. (c) Wang, D.; Zhu, N.; Chen, P.;
Lin, Z.; Liu, G. Enantioselective Decarboxylation
Cyanation Employing Cooperative Photoredox Catalysis
and Copper Catalysis. J. Am. Chem. Soc. 2017, 139,
15632–15635.
(16) Pirnot, M. T.; Wang, Y.-M.; Buchwald, S. L. Copper
Hydride Catalyzed Hydroamination of Alkenes and
Alkynes. Angew. Chem. Int. Ed. 2016, 55, 48–57.
(17) Friis, S. D.; Pirnot, M. T.; Buchwald, S. L.
Asymmetric Hydroarylation of Vinylarenes Using a
Synergistic Combination of CuH and Pd Catalysis. J. Am.
Chem. Soc. 2016, 138, 8372–8375.
(18) For examples of racemic CuH/Pd metal-catalyzed
hydroarylation reactions, see (a) Semba, K.; Ariyama, K.;
Zheng, H.; Kameyama, R.; Sakaki, S.; Nakao, Y.
Reductive Cross-Coupling of Conjugated Arylalkenes and
Aryl Bromides with Hydrosilanes by Cooperative
Palladium/Copper Catalysis. Angew. Chem. Int. Ed. 2016,
55, 6275–6279. (b) Friis, S. D.; Pirnot, M. T.; Dupuis, L.
N.; Buchwald, S. L. A Dual Palladium and Copper Hydride
Catalyzed Approach for Alkyl–Aryl Cross‐Coupling of
Aryl Halides and Olefins. Angew. Chem. Int. Ed. 2017, 56,
7242–7246.
(19) (a) Grigg, R.; Hayes, R.; Jackson, J. L. Thermal
Elimination Reactions of Nitrogen and Sulphur
Heterocycles. J. Chem. Soc. D, 1969, 1167–1168. (b)
Grigg, R.; Jackson, J. L. Elimination of Nitriles in Retro-
diene Reactions. J. Chem. Soc. C 1970, 552–556. (c)
Toshikazu, I.; Shuji, N.; Hiroyuki, N.; Jiro, T.; Yasushi, I.
The Diels–Alder Reactions of 2-Alkyl-5-methoxy-4-(p-
nitrophenyl)oxazoles with Ethylenic, Acetylenic, and Azo-
Type Dienophiles. Bull. Chem. Soc. Jpn. 1986, 59, 433–
437.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(20) (a) Turchi, I. J.; Dewar, M. J. S. The Chemistry of
Oxazoles. Chem. Rev. 1975, 75, 389–437. (b) Jouano, L.-
A.; Renault, K.; Sabot, C.; Renard, P.-Y. 5-
Alkoxyoxazole–A Versatile Building Block in
(Bio)organic Synthesis. Eur. J. Org. Chem. 2016, 3264–
3281.
(21) Boger, D. L. Diels-Alder reactions of heterocyclic aza
dienes. Scope and applications. Chem. Rev. 1986, 86, 781–
793.
(22) Employing P1 outside the glovebox resulted in a
similar yield and selectivity, see supporting information for
details on benchtop reaction setup.
(23) Harrington, P. J.; Lodewijk, E. Twenty Years of
Naproxen Technology. Org. Process Res. Dev. 1997, 1,
72–76.
(12) Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.;
Chen, P.; Stahl, S. S.; Liu, G. Enantioselective cyanation
of benzylic C⎯H bonds via copper-catalyzed radical relay.
Science 2016, 353, 1014–1018.
(13) (a) Choi, J.; Fu, G. C. Catalytic Asymmetric Synthesis
of Secondary Nitriles via Stereoconvergent Negishi
Arylations and Alkenylation of Racemic α-Bromonitriles.
J. Am. Chem. Soc. 2012, 134, 9102–9105. (b) Kadunce, N.
T.; Reisman, S. E. Nickel-Catalyzed Asymmetric
Reductive Cross-Coupling between Heteroaryl Iodides and
α-Chloronitriles. J. Am. Chem. Soc. 2015, 137, 10480–
10483. (c) Jiao, Z.; Chee, K. C.; Zhou, J. Palladium-
Catalyzed Asymmetric α-Arylation of Alkylnitriles. J. Am.
Chem. Soc. 2016, 138, 16240–16243.
(24) Gerin, D. J.; Bair, K. W.; Ioannidis, S.; Lancia, D. R.;
Li, H.; Mischke, S.; Ng, P. Y.; Richard, D.; Schiller, S. E.
R.; Shelekhin, T.; Wang, Z. Thienopyridine Carboxamides
ACS Paragon Plus Environment