G. A. McKay et al. / Bioorg. Med. Chem. Lett. 16 (2006) 1286–1290
1289
140
120
100
80
120
100
80
60
40
20
0
DNA
RNA
60
Protein
40
20
0
0.01
0.1
1
10
100
0.01
0.1
1
10
100
Concentration (ug/mL)
Concentration (ug/mL)
Figure 2. Inhibition of macromolecular biosynthesis by compounds (A) 1 and (B) 3.
The promiscuity of these inhibitors is further supported
by the impact of serum on the MIC against S. aureus
References and notes
1. (a) Overbye, K. M.; Barrett, J. F. Drug Discovery Today
2005, 10, 45; (b) Levy, S. B. Adv. Drug Delivery Rev. 2005,
57, 1446.
2. (a) Black, M. T.; Hodgson, J. Adv. Drug Delivery Rev.
2005, 57, 1528; (b) Brown, E. D.; Wright, G. D. Chem.
Rev. 2005, 105, 759.
3. (a) Egelman, E. H. J. Struct. Biol. 1998, 124, 123; (b)
Tuteja, N.; Tuteja, R. Eur. J. Biochem. 2004, 271, 1835; (c)
Caruthers, J. M.; McKay, D. B. Curr. Opin. Struct. Biol.
2002, 12, 123.
4. For an example of the essentiality of the helicase in S.
aureus: Liu, J.; Dehbi, M.; Moeck, G.; Arhin, F.; Bauda,
P.; Bergeron, D.; Callejo, M.; Ferretti, V.; Ha, N.; Kwan,
T.; McCarthy, J.; Srikumar, R.; Williams, D.; Wu, J. J.;
Gros, P.; Pelletier, J.; DuBow, M. Nat. Biotechnol. 2004,
22, 185.
5. (a) Van Der Ende, A.; Baker, T. A.; Ogawa, T.; Kornberg,
A. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 3954; (b) Davey,
M. J.; OÕDonnell, M. Curr. Biol. 2003, 13, R594.
6. (a) Houston, P.; Kodadek, T. Proc. Natl. Acad. Sci.
U.S.A. 1994, 91, 5471; (b) Soni, R. K.; Mehra, P.;
Choudhury, N. R.; Mukhopadhyay, G.; Dhar, S. K.
Nucleic Acids Res. 2003, 31, 6828.
7. (a) Zhong, Z.; Helinski, D.; Toukdarian, A. J. Biol. Chem.
2003, 278, 45305; (b) Caspi, R.; Pacek, M.; Consiglieri, G.;
Helinski, D. R.; Toukdarian, A.; Konieczny, I. EMBO J.
2001, 20, 3262.
which shifts to >128 lg/mL in the presence of 50% hu-
man or mouse serum in the growth medium.21,22 A sim-
ilar shift is obtained with 4% human serum albumin
(HSA). A gradual increase in albumin concentration re-
sults in a gradual linear shift in MIC, the slope of which
points to a stoichiometry of 0.47:1 for the binding of 1
to HSA and 0.23:1 for that of compound 3 and
HSA.21 Although these low stoichiometries of serum
protein binding by compounds 1 and 3 may leave some
room for attempts to retain target-specific activity while
reducing serum binding, the steeper slope of the MIC:se-
rum protein curve when using whole serum in place of
HSA is evidence that these compounds bind several
components of serum. This renders the possibility of
avoiding serum shift by design very small.
Because of this somewhat unselective character, it is not
surprising that when evaluated for potential as topical
antibacterial agents in vivo in the mouse wound model
of S. aureus infection,23 compounds 1 and 3 (0.2 mL
of compound formulated as 2% by weight in PEG400,
applied over the wound three times per day) were found
to be completely inactive (data not shown).
The present study has allowed the identification of 1,3,5-
triaminotriazines as inhibitors of the replicative helicase
DnaB from P. aeruginosa. The compounds lack antibac-
terial activity against this organism, but are active
against S. aureus and sporadically against a tolC mutant
of E. coli. Additional attributes of a lack of detectable
inhibition of mammalian DNA replication and little
affinity for DNA in vitro must be countered with the
demonstrable HeLa cell cytotoxicity of the original hit.
The development of brief structure–activity relation-
ships around the initial structure has allowed the discov-
ery of compounds with comparable antibacterial activity
but with a highly reduced cytotoxicity. Further investi-
gations into the activity associated with this class how-
ever show an unselective mode of action. This is
additionally supported by the detectable binding to a
number of serum components. While this sort of behav-
ior leaves little room to develop these compounds into
useable therapeutics, it serves to highlight the necessity
of stringent assessment of specificity and selectivity as
early as possible in the characterization of inhibitors
of in vitro enzyme assays.
8. Trautmann, M.; Lepper, P. M.; Haller, M. Am. J. Infect.
Control 2005, 33, S41.
9. Goldberg, J. B.; Pier, G. B. Trends Microbiol. 2000, 8, 514.
10. Zhang, Y.; Yang, F.; Kao, Y.-C.; Kurilla, M. G.;
Pompliano, D. L.; Dicker, I. B. Anal. Biochem. 2002,
304, 174.
11. Malich, G.; Markovic, B.; Winder, C. Toxicology 1997,
124, 179.
12. George, J. W.; Ghate, S.; Matson, S. W.; Besterman, J. M.
J. Biol. Chem. 1992, 261, 10683.
13. (a) Boger, D. L.; Fink, B. E.; Brunette, S. R.; Tse, W. C.;
Hedrick, M. P. J. Am. Chem. Soc. 2001, 123, 5878; (b)
Boger, D. L.; Fink, B. E.; Hedrick, M. P. J. Am. Chem.
Soc. 2000, 122, 6382.
14. National Committee for Clinical Laboratory Standards:
Methods for Dilution Antimicrobial Susceptibility Tests
for Bacteria that Grow Aerobically, 4th ed.: Approved
Standard M7-A4. Wayne (PA): NCCLS.
15. Calculated with Pallas PrologD, CompuDrug Internation-
al, Inc.; Sedona, AZ, USA, 2003.
16. The negative impact of higher logP values on antibacte-
rials has already been noted. See: Cronin, M. T. D.;
Aptula, A. O.; Dearden, J. C.; Duffy, J. C.; Netzeva, T. I.;
Patel, H.; Rowe, P. H.; Schultz, T. W.; Worth, A. P.;