Journal of the American Chemical Society
Communication
M.; Weyers, G. Synthesis and Properties of 1,3-Diisopropyl-4,5-
dimethylimidazolium-2-carboxylate. A Stable Carbene Adduct of
Carbon Dioxide. Z. Naturforsch., B: J. Chem. Sci. 1999, 54, 427−433.
(3) For selected examples, see: (a) Naumann, S.; Buchmeiser, M. R.
Liberation of N-heterocyclic carbenes (NHCs) from thermally labile
progenitors: protected NHCs as versatile tools in organo- and
polymerization catalysis. Catal. Sci. Technol. 2014, 4, 2466−2479.
(b) Lindner, R.; Lejkowski, M.; Lavy, S.; Deglmann, P.; Wiss, K. T.;
Zarbakhsh, S.; Meyer, L. M.; Limbach, M. Ring-Opening Polymer-
ization and Copolymerization of Propylene Oxide Catalyzed by N-
Heterocyclic Carbenes. ChemCatChem 2014, 6, 618−625. (c) Hans,
M.; Delaude, L.; Rodriguez, J.; Coquerel, Y. N-Heterocyclic Carbene
Catalyzed Carba-, Sulfa-, and Phospha-Michael Additions with NHC·
CO2 Adducts as Precatalysts. J. Org. Chem. 2014, 79, 2758−2764.
(d) Kayaki, Y.; Yamamoto, M.; Ikariya, T. N-Heterocyclic Carbenes
as Efficient Organocatalysts for CO2 Fixation Reactions. Angew.
Chem., Int. Ed. 2009, 48, 4194−4197. (e) Zhou, H.; Zhang, W.-Z.;
Liu, C.-H.; Qu, J.-P.; Lu, X.-B. CO2 Adducts of N-Heterocyclic
Carbenes: Thermal Stability and Catalytic Activity toward the
Coupling of CO2 with Epoxides. J. Org. Chem. 2008, 73, 8039−8044.
(4) (a) Voutchkova, A. M.; Feliz, M.; Clot, E.; Eisenstein, O.;
Crabtree, R. H. Imidazolium Carboxylates as Versatile and Selective
N-Heterocyclic Carbene Transfer Agents: Synthesis, Mechanism, and
Applications. J. Am. Chem. Soc. 2007, 129, 12834−12846. (b) Tudose,
A.; Demonceau, A.; Delaude, L. Imidazol(in)ium-2-carboxylates as N-
heterocyclic carbene precursors in ruthenium-arene catalysts for olefin
metathesis and cyclopropanation. J. Organomet. Chem. 2006, 691,
5356−5365. (c) Voutchkova, A. M.; Appelhans, L. N.; Chianese, A.
R.; Crabtree, R. H. Disubstituted Imidazolium-2-carboxylates as
Efficient Precursors to N-Heterocyclic Carbene Complexes of Rh, Ru,
Ir, and Pd. J. Am. Chem. Soc. 2005, 127, 17624−17625.
functionalization by uranium multimetallic complexes. Nat. Chem.
2019, 11, 154−160. (b) Palluccio, T. D.; Rybak-Akimova, E. V.;
Majumdar, S.; Cai, X.; Chui, M.; Temprado, M.; Silvia, J. S.;
Cozzolino, A. F.; Tofan, D.; Velian, A.; Cummins, C. C.; Captain, B.;
Hoff, C. D. Thermodynamic and Kinetic Study of Cleavage of the N−
O Bond of N-Oxides by a Vanadium(III) Complex: Enhanced
Oxygen Atom Transfer Reaction Rates for Adducts of Nitrous Oxide
and Mesityl Nitrile Oxide. J. Am. Chem. Soc. 2013, 135, 11357−
11372. (c) Tskhovrebov, A. G.; Solari, E.; Wodrich, M. D.; Scopelliti,
R.; Severin, K. Sequential N-O and N-N Bond Cleavage of N-
Heterocyclic Carbene-Activated Nitrous Oxide with a Vanadium
Complex. J. Am. Chem. Soc. 2012, 134, 1471−1473.
(10) Tskhovrebov, A. G.; Naested, L. C. E.; Solari, E.; Scopelliti, R.;
Severin, K. Synthesis of Azoimidazolium Dyes with Nitrous Oxide.
Angew. Chem., Int. Ed. 2015, 54, 1289−1292.
(11) (a) Powers, K.; Hering-Junghans, C.; McDonald, R.; Ferguson,
M. J.; Rivard, E. Improved synthesis of N-heterocyclic olefins and
evaluation of their donor strengths. Polyhedron 2016, 108, 8−14.
(b) Ibrahim Al-Rafia, S. M.; Malcolm, A. C.; Liew, S. K.; Ferguson, M.
J.; McDonald, R.; Rivard, E. Intercepting low oxidation state main
group hydrides with a nucleophilic N-heterocyclic olefin. Chem.
Commun. 2011, 47, 6987−6989.
(12) Eymann, L. Y. M.; Scopelliti, R.; Fadaei Tirani, F.; Severin, K.
Synthesis of Azo Dyes from Mesoionic Carbenes and Nitrous Oxide.
Chem. - Eur. J. 2018, 24, 7957−7963.
(13) (a) Glaser, R.; Chen, G. S.; Barnes, C. L. Origin of the
Stabilization of Vinyldiazonium Ions by β-Substitution; First Crystal
Structure of an Aliphatic Diazonium Ion: β,β-Diethoxyethenediazo-
nium Hexachloroantomonate. Angew. Chem., Int. Ed. Engl. 1992, 31,
740−743. (b) Bott, K. Dialkylamino-substituierte Ethylendiazonium-
salze. Chem. Ber. 1987, 120, 1867−1871. (c) Bott, K. Alkenediazo-
nium Salts: A New Chapter of Classical Organic Chemistry. Angew.
Chem., Int. Ed. Engl. 1979, 18, 259−265.
(14) (a) Murphy, J. A. Discovery and Development of Organic
Super-Electron-Donors. J. Org. Chem. 2014, 79, 3731−3746.
(b) Broggi, J.; Terme, T.; Vanelle, P. Organic Electron Donors as
Powerful Single-Electron Educing Agents in Organic Synthesis.
Angew. Chem., Int. Ed. 2014, 53, 384−413.
(15) Kamplain, J. W.; Lynch, V. M.; Bielawski, C. W. Synthesis and
Study of Differentially Substituted Dibenzotetraazafulvalenes. Org.
Lett. 2007, 9, 5401−5404.
(16) Shi, Z.; Thummel, R. P. N.N’-Bridged Derivatives of 2,2’-
Bibenzimidazole. J. Org. Chem. 1995, 60, 5935−5945.
(5) (a) Roy, M. M. D.; Rivard, E. Pushing Chemical Boundaries with
N-Heterocyclic Olefins (NHOs): From Catalysis to Main Group
Element Chemistry. Acc. Chem. Res. 2017, 50, 2017−2025.
(b) Ghadwal, R. S. Carbon-based two electron σ-donor ligands
beyond classical N-heterocyclic carbenes. Dalton Trans. 2016, 45,
16081−16095.
(6) (a) Zhou, H.; Wang, G.-X.; Lu, X.-B. CO2 Adducts of α-Carbon
Alkylated N-Heterocyclic Olefins: Highly Active Organocatalysts for
CO2 Chemical Transformation. Asian J. Org. Chem. 2017, 6, 1264−
1269. (b) Crocker, R. D.; Nguyen, T. V. The Resurgence of the
Highly Ylidic N-Heterocyclic Olefins as a New Class of Organo-
catalysts. Chem. - Eur. J. 2016, 22, 2208−2213. (c) Saptal, V. B.;
Bhanage, B. M. N-Heterocyclic Olefins as Robust Organocatalysts for
the Chemical Conversion of Carbon Dioxide to Value-Added
Chemicals. ChemSusChem 2016, 9, 1980−1985. (d) Wang, Y.-B.;
Sun, D.-S.; Zhou, H.; Zhang, W.-Z.; Lu, X.-B. CO2, COS and CS2
adducts of N-heterocyclic olefins and their application as organo-
catalysts for carbon dioxide fixation. Green Chem. 2015, 17, 4009−
4015. (e) Wang, Y.-B.; Wang, Y.-M.; Zhang, W.-Z.; Lu, X.-B. Fast
CO2 Sequestration, Activation, and Catalytic Transformation Using
N-Heterocyclic Olefins. J. Am. Chem. Soc. 2013, 135, 11996−12003.
(7) (a) Severin, K. Synthetic Chemistry with Nitrous Oxide. Chem.
Soc. Rev. 2015, 44, 6375−6386. (b) Leont’ev, A. V.; Fomicheva, O. A.;
Proskurnina, M. V.; Zefirov, N. S. Modern chemistry of nitrous oxide.
Russ. Chem. Rev. 2001, 70, 91−104.
(17) The redox potentials of compounds E and F were measured
using SCE or Ag/AgCl references, respectively. The potentials were
converted to the Fc/Fc+ scale using a conversion constant of 0.38 mV
(SCE) or 0.40 mV (Ag/AgCl). See: Pavlishchuk, V. V.; Addison, A.
W. Conversion constants for redox potentials measured versus
different reference electrodes in acetonitrile solutions at 25°C.
Inorg. Chim. Acta 2000, 298, 97−102.
(18) Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid
density functionals with damped atom-atom dispersion corrections.
Phys. Chem. Chem. Phys. 2008, 10, 6615−6620.
(19) (a) Hunig, S.; Scheutzow, D.; Schlaf, H.; Putter, H.
̈ ̈
Spectroscopy and Polarography of Vinylogous Bibenzimidazoles,
Bibenzoxazole and Bibenzothiazoles and their Aza Derivatives. Liebigs
Ann. Chem. 1974, 1974, 1436−1449. (b) Hunig, S.; Scheutzow, D.;
̈
(8) (a) Tskhovrebov, A. G.; Vuichoud, B.; Solari, E.; Scopelliti, R.;
Severin, K. Adducts of Nitrous Oxide and N-Heterocyclic Carbenes:
Syntheses, Structures, and Reactivity. J. Am. Chem. Soc. 2013, 135,
Schlaf, H.; Schott, A. Synthesis of Vinylogous Benzimidazoles,
Benzoxazoles and Benzothiazoles and their Aza Derivatives. Liebigs
Ann. Chem. 1974, 1974, 1423−1435.
̈
̈
9486−9492. (b) Gohner, M.; Haiss, P.; Kuhn, N.; Strobele, M.;
Zeller, K.-P. The 1:1 Adduct of 1,3-Diisopropyl-4,5-dimethyl-2,3-
dihydroimidazol-2-ylidene and Nitrous Oxide. Z. Naturforsch., B: J.
Chem. Sci. 2013, 68, 539−545. (c) Tskhovrebov, A. G.; Solari, E.;
Wodrich, M. D.; Scopelliti, R.; Severin, K. Covalent Capture of
Nitrous Oxide by N-Heterocyclic Carbenes. Angew. Chem., Int. Ed.
2012, 51, 232−234.
̈
(20) (a) Sharma, M. K.; Rottschafer, D.; Blomeyer, S.; Neumann, B.;
Stammler, H.-G.; van Gastel, M.; Hinz, A.; Ghadwal, R. S.
Diphosphene radical cations and dications with a π-conjugated
C2P2C2-framework. Chem. Commun. 2019, 55, 10408−10411.
̈
(b) Rottschafer, D.; Sharma, M. K.; Neumann, B.; Stammler, H.-G.;
Andrada, D. M.; Ghadwal, R. S. A Modular Access to
Divinylphosphenes with a Strikingly Small HOMO-LUMO Energy
Gap. Chem. - Eur. J. 2019, 25, 8127−8134. (c) Sharma, M. K.;
Blomeyer, S.; Neumann, B.; Stammler, H.-G.; Ghadwal, R. S.
(9) (a) Falcone, M.; Barluzzi, L.; Andrez, J.; Fadaei Tirani, F.;
Zivkovic, I.; Fabrizio, A.; Corminboeuf, C.; Severin, K.; Mazzanti, M.
The role of bridging ligands in dinitrogen reduction and
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX