the stability and distinctive absorption spectra of the
corresponding radical anions,21ꢀ24 and as ligands in nu-
cleic acid studies of telomerase inhibition in metastatic
cancer cells, due to their selective recognition of G-quad-
ruplex oligonucleotides.25ꢀ28
imidization with a primary amine in refluxing HOAc.5,31,36
NDA can also be brominated using Br2 in conc. H2SO4 or
oleum.5,37 The brominated NDI can then serve as an
intermediate for use in either nucleophilic substitutions,
to afford amino, thiol, or alkoxy derivatives,35,36 or
Pd-catalyzed coupling reactions, to yield cyano,5,33 phenyl,32,33
alkynyl,33 and thienyl11,14,32 products. However, the range
of conjugated species that can be obtained by Pd-catalyzed
methods is limited by the availability of appropriate candi-
date coupling partners. In particular, metalated reagents such
as stannanes and boronates can be difficult to obtain for
electron-poor (acceptor) building blocks. Accordingly, me-
talated NDI species would be valuable building blocks for
new types of conjugated NDI derivatives in which acceptor
groups are directly conjugated to the NDI core.
The N,N0-substituents of PDIs and NDIs generally have
only minimal influence on the optical and electronic pro-
perties of isolated molecules, although they can be used to
control solubility, aggregation, and intermolecular pack-
ing in the solid state. Core substitution of these species
typically has a much more significant effect on the redox
potentials (enabling air-stable OFET operation in some
cases5,13,29) and optical spectra. Moreover, core substitu-
tion can be used as a means of constructing more elaborate
architectures such as conjugated polymers7,11,20,30,31 and
donor- or acceptor-functionalized products.13,14,32ꢀ36
Functionalized NDIs are most effectively obtained
through the selective bromination of naphthalene-1,4:5,
8-tetracarboxylic dianhydride (NDA) with dibromoisocya-
nuric acid (DBI) in conc. H2SO4 or oleum, followed by
Here we report the synthesis, using Pd-catalyzed coupl-
ing38,39 of brominated NDIs and Sn2Bu6, of the first
stannyl derivatives of NDIs and their use in Stille reactions
to obtain bi- and ter-NDIs.
(14) Polander, L. E.; Tiwari, S. P.; Pandey, L.; Seifried, B. M.; Zhang,
ꢀ
Scheme 1. Preparation of Stannyl NDI Derivatives
Q.; Barlow, S.; Risko, C.; Bredas, J.-L.; Kippelen, B.; Marder, S. R.
Chem. Mater. 2011, 23, 3408–3410.
€
(15) Wurthner, F.; Stolte, M. Chem. Commun. 2011, 47, 5109–5115.
(16) Halls, J.; Friend, R. Synth. Met. 1997, 85, 1307–1308.
(17) Hou, J.; Zhang, S.; Chen, T. L.; Yang, Y. Chem. Commun. 2008,
6034–6036.
(18) Sharma, G. D.; Balraju, P.; Mikroyannidis, J. A.; Stylianakis,
M. M. Sol. Energ. Mat. Sol. C 2009, 93, 2025–2028.
(19) Shibano, Y.; Imahori, H.; Adachi, C. J. Phys. Chem. C 2009,
113, 15454–15466.
(20) Wei, Y.; Zhang, Q.; Jiang, Y.; Yu, J. Macromol. Chem. Phys.
2009, 210, 769–775.
(21) Schenning, A. P. H. J.; Herrikhuyzen, von, J.; Jonkheijm, P.;
€
Chen, Z.; Wurthner, F.; Meijer, E. W. J. Am. Chem. Soc. 2002, 124,
10252–10253.
(22) O’neil, M. P.; Niemczyk, M. P.; Svec, W. A.; Gosztola, D.;
Gaines, G. L.; Wasielewski, M. R. Science 1992, 257, 63–65.
(23) An, Z.; Odom, S. A.; Kelley, R. F.; Huang, C.; Zhang, X.;
Barlow, S.; Padilha, L. A.; Fu, J.; Webster, S.; Hagan, D. J.; Van
Stryland, E. W.; Wasielewski, M. R.; Marder, S. R. J. Phys. Chem. A
2009, 113, 5585–5593.
N,N0-Di-(n-hexyl)-2-tri(n-butyl)stannylnaphthalene-
1,4,5,8-bis(dicarboximide), 3, and N,N0-di(n-hexyl)-2,6-
bis(tri(n-butyl)stannyl)naphthalene-1,4,5,8-bis(dicarboxi-
mide), 4, were obtained in good to moderate yields,
respectively, according to Scheme 1: a mixture of the
appropriate mono- or dibromo derivative, 1 or 2, and
Sn2Bu6 (1 equiv per Br) was heated in toluene in the
presence of Pd2dba3 (0.05 equiv per Br) and P(o-tol)3
(0.2 equiv per Br). Purification of the products by silica
gel chromatography and recrystallization from MeOH
afforded the mono- and distannyl derivatives as long
yellow needles; these compounds were characterized by
NMR spectroscopy, mass spectrometry, elemental analy-
sis, and, in the case of 4, X-ray crystallography (Figure 1;
see Supporting Information (SI) for details).40 The
ability to isolate and thoroughly purify the distannyl
derivative is important for potential applications in
conjugated-polymer syntheses, where the ability to obtain
ꢀ
ꢀ
(24) Fukuzumi, S.; Ohkubo, K.; Ortiz, J.; Gutierrez, A. M.; Fernandez-
ꢀ
ꢀ
Lazaro, F.; Sastre-Santos, A. Chem. Commun. 2005, 3814–3816.
(25) Di Antonio, M.; Doria, F.; Richter, S. N.; Bertipaglia, C.; Mella,
M.; Sissi, C.; Palumbo, M.; Freccero, M. J. Am. Chem. Soc. 2009, 131,
13132–13141.
(26) Collie, G. W.; Haider, S. M.; Neidle, S.; Parkinson, G. N.
Nucleic Acids Res. 2010, 38, 5569–5580.
(27) Nadai, M.; Doria, F.; Di Antonio, M.; Sattin, G.; Germani, L.;
Percivalle, C.; Palumbo, M.; Richter, S. N.; Freccero, M. Biochimie
2011, 93, 1328–1340.
(28) Gunaratnam, M.; la Fuente, de, M.; Hampel, S. M.; Todd,
€
A. K.; Reszka, A. P.; Schatzlein, A.; Neidle, S. Bioorg. Med. Chem. 2011,
19, 7151–7157.
€
(29) Oh, J. H.; Suraru, S.-L.; Lee, W.-Y.; Konemann, M.; Hoffken,
H. W.; Roger, C.; Schmidt, R.; Chung, Y.; Chen, W.-C.; Wurthner, F.;
€
€
€
Bao, Z. Adv. Funct. Mater. 2010, 20, 2148–2156.
(30) Durban, M. M.; Kazarinoff, P. D.; Luscombe, C. K. Macro-
molecules 2010, 43, 6348–6352.
(31) Guo, X.; Watson, M. D. Org. Lett. 2008, 10, 5333–5336.
(32) Bhosale, S. V.; Kalyankar, M. B.; Bhosale, S. V.; Langford, S. J.;
Reid, E. F.; Hogan, C. F. New J. Chem. 2009, 33, 2409–2413.
(33) Chopin, S.; Chaignon, F.; Blart, E.; Odobel, F. J. Mater. Chem.
2007, 17, 4139–4146.
€
(34) Suraru, S.-L.; Wurthner, F. Synthesis 2009, 2009, 1841–1845.
€
€
(35) Thalacker, C.; Roger, C.; Wurthner, F. J. Org. Chem. 2006, 71,
8098–8105.
(38) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508–524.
(39) Azizian, H.; Eaborn, C.; Pidcock, A. J. Organomet. Chem. 1981,
215, 49–58.
(40) Under identicalconditions, the monobrominated PDI derivative
undergoes homocoupling to yield the bi-PDI product and the corre-
sponding stannyl PDI intermediate cannot be isolated.
€
€
(36) Roger, C.; Wurthner, F. J. Org. Chem. 2007, 72, 8070–8075.
(37) Gao, X.; Qiu, W.; Yang, X.; Liu, Y.; Wang, Y.; Zhang, H.; Qi,
T.; Liu, Y.; Lu, K.; Du, C.; Shuai, Z.; Yu, G.; Zhu, D. Org. Lett. 2007, 9,
3917–3920.
Org. Lett., Vol. 14, No. 3, 2012
919