Journal of the American Chemical Society
Page 4 of 5
(8) Beharry, A. A.; Woolley, G. A. Chem. Soc. Rev. 2011, 40, 4422.
(9) Szymański, W.; Beierle, J. M.; Kistemarker, H. A. V.; Velema, W.
A.; Feringa, B. L. Chem. Rev. 2013, 113, 6114.
In conclusion, reversible fluorescence photoswitching of 1 was
induced by irradiation with singleꢀwavelength visible light, the
wavelength of which is longer than the 0ꢀ0 transition of 1a. The
visible light induces the photocyclization reaction of 1a to proꢀ
duce fluorescent 1b. A considerable amount of 1b is produced
when the cycloreversion quantum yield of 1b is very low, less
than ~ 10−3. The cyclization reaction of 1a with the visible light in
the far offꢀresonance region of the absorption edge is ascribed to
the electronical transition caused by the optical absorption of the
very weak hot bands or the Urbach tails. The derivatives having
the singleꢀwavelength visible light sensitivity can be advantaꢀ
geously applicable to superꢀresolution fluorescence microscopies,
such as PALM and STORM.
1
2
3
4
5
6
7
8
(10) (a) Irie, M.; Fukaminato, T.; Sasaki, T.; Tamai, N.; Kawai, T. Naꢀ
ture 2002, 420, 759. (b) Fukaminato, T.; Sasaki, T.; Kawai, T.; Tamai, N.;
Irie, M. J. Am. Chem. Soc. 2004, 126, 14843. (c) Fukaminato, T.; Umemoꢀ
to, T.; Iwata, Y.; Yokojima, S.; Yoneyama, M.; Nakamura, S.; Irie, M. J.
Am. Chem. Soc. 2007, 129, 5932. (d) Fukaminato, T.; Doi, T.; Tamaoki,
N.; Okuno, K.; Ishibashi, Y.; Miyasaka, H.; Irie, M. J. Am. Chem. Soc.
2011, 133, 4984.
(11) (a) Berberich, M.; Krause, A.ꢀM.; Orlandi, M.; Scandola, F.;
Würthner, F. Ang. Chem. Int. Ed. 2008, 47, 6616. (b) Berberich, M.; Nataꢀ
li, M.; Spenst, O.; Chiorboli, C.; Scandola, F.; Würthner, F. Chem. Eur. J.
2012, 18, 13651.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(12) Fukaminato, T. J. Photochem. Photobiol. C 2011, 12, 177.
(13) Heilemann, M.; Dedecker, P.; Hofkens, J.; Sauer, M. Laser Phoꢀ
ton. Rev. 2009, 3, 180.
(14) Raymo, F. M. Phys. Chem. Chem. Phys. 2013, 15, 14840.
(15) Fürstenberg, A.; Heilemann, M. Phys. Chem. Chem. Phys. 2013,
15, 14919.
(16) Kwon, J.; Hwang, J.; Park, J.; Han, G. R.; Han, K. Y.; Kim, S. K.
Sci. Rep. 2015, 5, 17804.
(17) Sengupta, P.; van Engelenburg, S. B.; LippincottꢀSchwartz, J.
Chem. Rev. 2014, 114, 3189.
(18) (a) Jeong, Y.ꢀC.; Yang, S. I.; Ahn, K.ꢀH.; Kim, E. Chem. Comꢀ
mun. 2005, 2503. (b) Jeong, Y.ꢀC.; Yang, S. I.; Kim, E.; Ahn, K.ꢀH. Tetꢀ
rahedron, 2006, 62, 5855. (c) Jeong, Y.ꢀC.; Park, D. G.; Lee, I. S.; Yang,
S. I.; Ahn, K.ꢀH. J. Mater. Chem. 2009, 19, 97.
(19) (a) Uno, K.; Niikura, H.; Morimoto, M.; Ishibashi, Y.; Miyasaka,
H.; Irie, M. J. Am. Chem. Soc. 2011, 133, 13558. (b) Takagi, Y.; Kunishi,
T.; Katayama, T.; Ishibashi, Y.; Miyasaka, H.; Morimoto, M.; Irie, M.
Photochem. Photobiol. Sci. 2012, 11, 1661. (c) Takagi, Y.; Morimoto, M.;
Kashihara, R.; Fujinami, S.; Ito, S.; Miyasaka, H.; Irie, M. Tetrahedron
2017, 73, 4918. (d) Morimoto, M.; Irie, M. In PhotonꢀWorking Switches;
Yokoyama, Y.; Nakatani, K. Eds.; Springer: Tokyo, 2017; pp 117ꢀ131. (e)
Morimoto, M.; Sumi, T.; Irie, M. Materials 2017, 10, 1021.
(20) Nevskyi, O.; Sysoiev, D.; Oppermann, A.; Huhn, T.; Wöll, D. Anꢀ
gew. Chem. Int. Ed. 2016, 55, 12698.
(21) Roubinet, B.; Weber, M.; Shojaei, H.; Bates, M.; Bossi, M. L.; Beꢀ
lov, V. N.; Irie, M.; Hell, S. W. J. Am. Chem. Soc. 2017, 139, 6611.
(22) Arai, Y.; Ito, S.; Fujita, H.; Yoneda, Y.; Kaji, T.; Takei, S.;
Kashihara, R.; Morimoto, M.; Irie, M.; Miyasaka, H. Chem. Commun.
2017, 53, 4066.
(23) Roubinet, B.; Bossi, M. L.; Alt, P.; Leutenegger, M.; Shojaei, H.;
Schnorrenberg, S.; Nizamov, S.; Irie, M.; Belov, V. N.; Hell, S. W. Anꢀ
gew. Chem. Int. Ed. 2016, 55, 15429.
(24) Birks, J. B. Photophysics of Aromatic Molecules; John Wiley &
Sons Ltd: London, 1970.
(25) Urbach, F. Phys. Rev. 1953, 92, 1324.
(26) Wondrazek, F.; Seilmeier, A.; Kaiser, W. Chem. Phys. Lett. 1984,
104, 121.
(27) Kinoshita, S.; Nishi, N.; Saitoh, A.; Kushida, T. J. Phys. Soc. Jpn.
1987, 56, 4162.
(28) Mizuno, K.; Matsui, A.; Sloan, G. J. J. Phys. Soc. Jpn. 1984, 53,
2799.
(29) Similar photoreactions have also been noticed at the singleꢀ
molecule level in PALM/STORM experiments using diarylethene derivaꢀ
tives with very low cycloreversion quantum yields.21,22
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: ######/##########.
Experimental details and additional data (PDF)
AUTHOR INFORMATION
Corresponding Author
*iriem@rikkyo.ac.jp
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work was supported by JSPS KAKENHI Grant Numbers
JP26107002,
JP26288009,
JP15H01096,
JP15K13625,
JP16H03827, JP16H06505, JP17H05272 and MEXTꢀSupported
Program for the Strategic Research Foundation at Private Univerꢀ
sities. The authors wish to thank Prof. Satoshi Kawata at Osaka
University for his helpful discussion on Raman scattering.
REFERENCES
(1) Irie, M.; Yokoyama, Y.; Seki, T. New Frontiers in Photochromism;
Springer: Tokyo, 2013.
(2) Tian, H.; Zhang, J. Photochromic Materials: Preparation, Properꢀ
ties and Applications; WileyꢀVCH Verlag GmbH: Weinheim, 2016.
(3) Yokoyama, Y.; Nakatani, K. PhotonꢀWorking Switches; Springer:
Tokyo, 2017.
(4) (a) Russew, M.ꢀM.; Hecht, S. Adv. Mater. 2010, 22, 3348. (b)
Göstl, R.; Senf, A.; Hecht, S. Chem. Soc. Rev. 2014, 43, 1982.
(5) Klajn, R. Chem. Soc. Rev. 2014, 43, 148.
(6) (a) Irie, M. Chem. Rev. 2000, 100, 1685. (b) Irie, M.; Fukaminato,
T.; Matsuda, K.; Kobatake, S. Chem. Rev. 2014, 114, 12174.
(7) (a) Tian, H.; Yang, S. Chem. Soc. Rev. 2004, 33, 85. (b) Zhang, J.;
Qi, Z.; Tian, H. Adv. Mater. 2013, 25, 378.
ACS Paragon Plus Environment