Angewandte
Chemie
impact on the ground state than on the transition state.[29,30]
The importance of hydrogen bonding in the acceleration of
Diels–Alder reactions in aqueous solution is supported by
both experimental[31] and theoretical[32] studies.
ylates at À608C, see: M. A. Brimble, C. H. Heathcock, J. Org.
Chem. 1993, 58, 5261.
[14] R. B. Woodward, H. Baer, J. Am. Chem. Soc. 1948, 70, 1161; H.
Hopff, C. W. Rautenstrauch, US 2262002, 1939 [Chem. Abstr.
1942, 36, 10469].
However, it seems that many of the reactions described
above are simply too fast for the acceleration to be solely due
to solution-phase phenomena. In this regard, the observed
requirement for heterogeneity and the finding that the rates
of reactions “on water” often exceed those of the same
reactions performed in the absence of solvent demand
attention. Perhaps the unique properties of molecules at the
macroscopic phase boundary between water and insoluble
hydrophobic oils play a role.[33] The same principles that
contribute to solution-phase effects may be amplified at such
phase boundaries, but other factors, such as the redistribution
of surface species driven by surface-tension energetics,[34] may
also be relevant. We plan to keep exploring the “on water”
phenomenon both for practical applications and mechanistic
understanding.
[15] D. C. Rideout, R. Breslow, J. Am. Chem. Soc. 1980, 102, 7816.
[16] R. Breslow, U. Maitra, D. Rideout, Tetrahedron Lett. 1983, 24,
1901.
[17] For an excellent recent review of the role of hydrophobic effects
on reactivity, see: S. Otto, J. B. F. N. Engberts, Org. Biomol.
Chem. 2003, 1, 2809.
[18] P. A. Grieco, P. Garner, Z. He, Tetrahedron Lett. 1983, 24, 1897.
[19] P. A. Grieco, K. Yoshida, P. Garner, J. Org. Chem. 1983, 48, 3137;
However, see: R. Breslow, U. Maitra, Tetrahedron Lett. 1984, 25,
1239, and Ref. [28b].
[20] As both starting materials and the product are oils, the neat
reaction is not prone to physical “mixing” issues, which can arise
when one of the reactants is a solid. Even when mixing is not an
issue, we have encountered a few cases where the reactions “on
water” are two- to threefold faster than the corresponding neat
reaction, although the example shown here is typical.
[21] J. J. Gajewski in Organic Synthesis in Water (Ed.: P. A. Grieco),
Blackie, London, 1998, p. 82.
Received: December 10, 2004
Published online: April 21, 2005
[22] a) S. D. Copley, J. R. Knowles, J. Am. Chem. Soc. 1987, 109,
5008; b) R. M. Coates, B. D. Rogers, S. J. Hobbs, D. R. Peck,
D. P. Curran, J. Am. Chem. Soc. 1987, 109, 1160; c) J. J. Gajewski,
J. Jurayj, D. R. Kimbrough, M. E. Gande, B. Ganem, B. K.
Carpenter, J. Am. Chem. Soc. 1987, 109, 1170; d) B. Ganem,
Angew. Chem. 1996, 108, 1015; Angew. Chem. Int. Ed. Engl.
1996, 35, 937.
[23] E. Brandes, P. A. Grieco, J. J. Gajewski, J. Org. Chem. 1989, 54,
515.
[24] Grieco subsequently reported that the rearrangement of the
same methyl ester in aqueous suspension was qualitatively
comparable in rate and efficiency to that of the carboxylate salt
in homogeneous solution. See Ref. [25].
[25] P. A. Grieco, E. B. Brandes, S. McCann, J. D. Clark, J. Org.
Chem. 1989, 54, 5849.
[26] a) W. N. White, E. F. Wolfarth, J. Org. Chem. 1970, 35, 2196; b) J.
An, L. Bagnell, T. Cablewski, C. R. Strauss, R. W. Trainor, J.
Org. Chem. 1997, 62, 2505.
[27] a) G. Desimoni, G. Faita, P. P. Righetti, L. Toma, Tetrahedron
1990, 46, 7951; b) J. J. Gajewski, J. Org. Chem. 1992, 57, 5500;
“Structure and Reactivity in Aqueous Solution: Characterization
of Chemical and Biological Systems”, J. J. Gajewski, N. L.
Brichford, ACS Symp. Ser. 1994, 568, 229.
[28] a) W. Blokzijl, J. B. F. N. Engberts, Angew. Chem. 1993, 105,
1610; Angew. Chem. Int. Ed. Engl. 1993, 32, 1545; b) “Structure
and Reactivity in Aqueous Solution”, W. Blokzijl, J. B. F. N.
Engberts, ACS Symp. Ser. 1994, 568, 303.
Keywords: click chemistry · cycloaddition · interfaces ·
.
rearrangement · water chemistry
[1] a) Organic Synthesis in Water (Ed.: P. A. Grieco), Blackie,
London, 1998; b) C.-J. Li, Chem. Rev. 1993, 93, 2023; c) U. M.
Lindstrom, Chem. Rev. 2002, 102, 2751.
[2] a) R. Breslow, Acc. Chem. Res. 1991, 24, 159; b) “Structure and
Reactivity in Aqueous Solution”, R. Breslow, ACS Symp. Ser.
1994, 568, 291.
[3] J. J. Gajewski, Acc. Chem. Res. 1997, 30, 219.
[4] H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. 2001, 113,
2056; Angew. Chem. Int. Ed. 2001, 40, 2004.
[5] V. V. Fokin, K. B. Sharpless, Angew. Chem. 2001, 113, 3563;
Angew. Chem. Int. Ed. 2001, 40, 3455.
[6] Z. M. Wang, K. B. Sharpless, J. Org. Chem. 1994, 59, 8302; Z. P.
Demko, K. B. Sharpless, J. Org. Chem. 2001, 66, 7945.
[7] At 4.18 JcmÀ3 K, water has an unusually high heat capacity for a
liquid; see: NIST Chemistry WebBook (Eds.: P. J. Linstrom,
W. G. Mallard), NIST Standard Reference Database Number 69,
March 2003, National Institute of Standards and Technology,
Gaithersburg MD, 20899 (http://webbook.nist.gov).
[8] N. Rieber, J. Alberts, J. A. Lipsky, D. M. Lemal, J. Am. Chem.
Soc. 1969, 91, 5668.
[29] A. Meijer, S. Otto, J. B. F. N. Engberts, J. Org. Chem. 1998, 63,
8989.
[30] W. Blokzijl, J. B. F. N. Engberts, J. Am. Chem. Soc. 1992, 114,
5440.
[9] R. Platz, W. Fuchs, N. Rieber, U.-R. Samuel, J. Jung (BASFAG),
DE 2615878, 1977 [Chem. Abstr. 1978, 88, 37803].
[10] The amount of water used can be chosen to best balance/control
the exothermicity of the reaction, as the resulting increase in
total reaction volume does not constitute dilution of the reaction
zone.
[11] For an example of solvent effect on the cycloaddition of
quadricyclane with azodicarbonyl compounds, see: M. E.
Landis, J. C. Mitchell, J. Org. Chem. 1979, 44, 2288.
[12] A. Rodgman, G. F. Wright, J. Org. Chem. 1953, 18, 465. For the
only reported example, to our knowledge, of the accelerating
influence of water on the reactions of azodicarboxylates, see:
L. E. Gast, E. W. Bell, H. M. Teeter, J. Am. Oil Chem. Soc. 1956,
33, 278.
[31] a) S. Otto, W. Blokzijl, J. B. F. N. Engberts, J. Org. Chem. 1994,
59, 5372; b) G. K. van der Wel, J. W. Wijnen, J. B. F. N. Engberts,
J. Org. Chem. 1996, 61, 9001.
[32] J. Chandrasekhar, S. Shariffskul, W. L. Jorgensen, J. Phys. Chem.
B 2002, 106, 8078.
[33] a) R. U. Lemieux, Acc. Chem. Res. 1996, 29, 373; b) D. N. Shin,
J. W. Wijnen, J. Engberts, A. Wakisaka, J. Phys. Chem. B 2001,
105, 6759; c) D. N. Shin, J. W. Wijnen, J. Engberts, A. Wakisaka,
J. Phys. Chem. B 2002, 106, 6014; d) S. K. Pal, J. Peon, A. H.
Zewail, Proc. Natl. Acad. Sci. USA 2002, 99, 1763; e) L. R. Pratt,
A. Pohorille, Chem. Rev. 2002, 102, 2671.
[34] J. T. Koberstein, J. Polym. Sci. Part B 2004, 42, 2942.
[13] Y. Leblanc, R. Zamboni, M. A. Bernstein, J. Org. Chem. 1991,
56, 1971; For Lewis acid mediated ene reactions of azodicarbox-
Angew. Chem. Int. Ed. 2005, 44, 3275 –3279
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3279