Organic Letters
Letter
(7) Zimmerman, H. E.; Schissel, D. N. Di-π-Methane Rearrange-
ments of Highly Sterically Congested Molecules: Inhibition of Free-
Rotor Energy Dissipation. Mechanistic and Exploratory Organic
Photochemistry. J. Org. Chem. 1986, 51, 196−207.
(8) (a) Eisch, J. J.; Galle, J. E. Rearrangements of Organometallic
Compounds. XIII. Bora-aromatic Systems. IV. Synthesis of Hepta-
phenylborepin via the Thermal Rearrangement of Heptaphenyl-7-
borabicyclo[2.2.1]heptadiene. J. Am. Chem. Soc. 1975, 97, 4436−4437.
(b) Eisch, J. J.; Boleslawski, M. P.; Tamao, K. Bora-aromatic Systems.
X. Photochemical Generation of the Diphenylborate(I) Anion from
Metal Tetraphenylborates(III) in Aprotic Media: Repudiation of a
Contravening Claim. J. Org. Chem. 1989, 54, 1627−1634.
(9) (a) Wilkey, J. D.; Schuster, G. B. 2,5,7,7-Tetraphenyl-7-
boratabicyclo[4.1.0]hepta-2,4-diene: The First Isolation and Charac-
terization of a Boratanorcaradiene. J. Am. Chem. Soc. 1988, 110, 7569−
7571. (b) Wilkey, J. D.; Schuster, G. B. Irradiation of Tetraphenylbo-
rate Does Not Generate a Borene Anion. J. Org. Chem. 1987, 52,
2117−2122. (c) Wilkey, J. D.; Schuster, G. B. Photochemistry of
Tetraarylborate Salts (Ar4B−): Formation of 2,5,7,7-Tetraphenyl-7-
boratabicyclo[4.1.0]hepta-2,4-diene (a Boratanorcaradiene) by Irradi-
ation of (p-Biphenylyl)triphenyl Borate. J. Am. Chem. Soc. 1991, 113,
2149−2155.
mation and C−H Bond Insertion. J. Am. Chem. Soc. 2012, 134,
11026−11034.
(14) (a) Rao, Y.-L.; Amarne, H.; Zhao, S.-B.; McCormick, T. M.;
́
Martic, S.; Sun, Y.; Wang, R.-Y.; Wang, S. Reversible Intramolecular
C−C Bond Formation/Breaking and Color Switching Mediated by a
N,C-Chelate in (2-Ph-py)BMes2 and (5-BMes2-2-Ph-py)BMes2. J. Am.
Chem. Soc. 2008, 130, 12898−12900. (b) Mellerup, S. K.; Li, C.; Peng,
T.; Wang, S. Regioselective Photoisomerization/C−C Bond For-
mation of Asymmetric B(ppy)(Mes)(Ar): The Role of the Aryl
Groups on Boron. Angew. Chem., Int. Ed. 2017, 56, 6093−6097.
(15) Mellerup, S. K.; Li, C.; Radtke, J.; Wang, X.; Li, Q.-S.; Wang, S.
(16) (a) Chernichenko, K.; Lindqvist, M.; Kot
́
ai, B.; Nieger, M.;
Sorochkina, K.; Pap
́
ai, I.; Repo, T. Metal-Free Sp2-C−H Borylation as
a Common Reactivity Pattern of Frustrated 2-Aminophenylboranes. J.
Am. Chem. Soc. 2016, 138, 4860−4868. (b) Yu, L.; Li, Y.; Wang, X.;
Wang, X.; Zhou, P.; Jiang, S.; Pan, X. Consecutive Reduction, Radical-
Cyclization, and Oxidative-Dehydrogenation Reaction of Ortho-
Substituted Diboryl Compounds. Chem. Commun. 2017, 53, 9737−
9740.
(17) Amarne, H.; Baik, C.; Murphy, S. K.; Wang, S. Steric and
Electronic Influence on Photochromic Switching of N,C-Chelate Four-
Coordinate Organoboron Compounds. Chem. - Eur. J. 2010, 16,
4750−4761.
(18) Mellerup, S. K.; Wang, S. Photoresponsive Organoboron
Systems. In Main Group Strategies towards Functional Hybrid Materials;
Baumgartner, T., Jaekle, F., Eds.; John Wiley & Sons Ltd.: Hoboken,
2018; pp 47−78.
(10) Eisch, J. J.; Tamao, K.; Wilcsek, R. J. Rearrangements of
Organometallic Compounds. XII. Generation of Boracarbenoid and
Boracyclopropene Intermediates from the Photolysis of Tetraorgano-
borate Salts in Aprotic Media. J. Am. Chem. Soc. 1975, 97, 895−897.
(11) For a recent review article covering new results in 9-
borafluorene chemistry, see: von Grotthuss, E.; John, A.; Kaese, T.;
Wagner, M. Doping Polycyclic Aromatics with Boron for Superior
Performance in Materials Science and Catalysis. Asian J. Org. Chem.
2018, 7, 37−53.
(19) Catalytic CH3CN trimerization with formation of 2,6-
dimethylpyrimidin-4-amine was observed instead (see the SI).
(20) (a) Bissinger, P.; Braunschweig, H.; Kraft, K.; Kupfer, T.
Trapping the Elusive Parent Borylene. Angew. Chem., Int. Ed. 2011, 50,
4704−4707. (b) Braunschweig, H.; Claes, C.; Damme, A.;
(12) (a) Koster, R.; Willemsen, H. Borverbindungen, XXVIII, 1,2-
̈
(2,2′-Biphenylen)diborane(6). Justus Liebigs Ann. Chem. 1974, 1974,
Deißenberger, A.; Dewhurst, R. D.; Horl, C.; Kramer, T. A Facile
̈
1843−1850. (b) Hubner, A.; Qu, Z.-W.; Englert, U.; Bolte, M.; Lerner,
̈
and Selective Route to Remarkably Inert Monocyclic NHC-Stabilized
Boriranes. Chem. Commun. 2015, 51, 1627−1630. (c) McFadden, T.
R.; Fang, C.; Geib, S. J.; Merling, E.; Liu, P.; Curran, D. P. Synthesis of
Boriranes by Double Hydroboration Reactions of N-Heterocyclic
Carbene Boranes and Dimethyl Acetylenedicarboxylate. J. Am. Chem.
H.-W.; Holthausen, M. C.; Wagner, M. Main-Chain Boron-Containing
Oligophenylenes via Ring-Opening Polymerization of 9-H-9-Bora-
fluorene. J. Am. Chem. Soc. 2011, 133, 4596−4609. (c) Hubner, A.;
̈
Diefenbach, M.; Bolte, M.; Lerner, H.-W.; Holthausen, M. C.; Wagner,
M. Confirmation of an Early Postulate: B-C-B Two-Electron-Three-
Center Bonding in Organo(hydro)boranes. Angew. Chem., Int. Ed.
Soc. 2017, 139, 1726−1729. (d) Mellerup, S. K.; Hafele, L.; Lorbach,
̈
A.; Wang, X.; Wang, S. Triplet Energy and π-Conjugation Effects on
Photoisomerization of Chiral N,C-Chelate Organoborons with PAH
Substituents. Org. Lett. 2017, 19, 3851−3854.
2012, 51, 12514−12518. (d) Biswas, S.; Maichle-Mossmer, C.;
̈
Bettinger, H. F. Rearrangement from the Heteroantiaromatic Borole
to the Heteroaromatic Azaborine Motif. Chem. Commun. 2012, 48,
4564−4566. (e) Muller, M.; Maichle-Mossmer, C.; Bettinger, H. F.
̈
̈
BN-Phenanthryne: Cyclotetramerization of an 1,2-Azaborine Deriva-
tive. Angew. Chem., Int. Ed. 2014, 53, 9380−9383. (f) Braunschweig,
H.; Horl, C.; Mailander, L.; Radacki, K.; Wahler, J. Antiaromaticity to
̈
̈
Aromaticity: From Boroles to 1,2-Azaborinines by Ring Expansion
with Azides. Chem. - Eur. J. 2014, 20, 9858−9861. (g) Huang, K.;
Martin, C. D. Ring Expansion Reactions of Pentaphenylborole with
Dipolar Molecules as a Route to Seven-Membered Boron Hetero-
cycles. Inorg. Chem. 2015, 54, 1869−1875. (h) Barnard, J. H.; Yruegas,
S.; Huang, K.; Martin, C. D. Ring Expansion Reactions of Anti-
Aromatic Boroles: A Promising Synthetic Avenue to Unsaturated
Boracycles. Chem. Commun. 2016, 52, 9985−9991. (i) Yruegas, S.;
Wilson, C.; Dutton, J. L.; Martin, C. D. Ring Opening of Epoxides
Induced by Pentaphenylborole. Organometallics 2017, 36, 2581−2587.
(j) Kaese, T.; Trageser, T.; Budy, H.; Bolte, M.; Lerner, H.-W.;
Wagner, M. A Redox-Active Diborane Platform Performs C(sp3)−H
Activation and Nucleophilic Substitution Reactions. Chem. Sci. 2018,
9, 3881−3891.
(13) Neutral C,C-chelates based on N-heterocyclic carbenes are
known: (a) Nagura, K.; Saito, S.; Frohlich, R.; Glorius, F.; Yamaguchi,
̈
S. N-Heterocyclic Carbene Boranes as Electron-Donating and
Electron-Accepting Components of π-Conjugated Systems. Angew.
Chem., Int. Ed. 2012, 51, 7762−7766. (b) Rao, Y.-L.; Chen, L. D.;
Mosey, N. J.; Wang, S. Stepwise Intramolecular Photoisomerization of
NHC-Chelate Dimesitylboron Compounds with C−C Bond For-
E
Org. Lett. XXXX, XXX, XXX−XXX