4
Tetrahedron
15. (a) Moon, J.; Jang, M.; Lee, S. J. Org. Chem. 2009, 74, 1403–
1406; (b) Kim, H.; Lee, P. H. Adv. Synth. Catal. 2009, 351, 2827–
2832; (c) Park, K.; Lee, S. RSC Adv. 2013, 3, 14165−14182; (d)
Shi, L.; Jia, W.; Li, X.; Jiao, N. Tetrahedron Lett. 2013, 54,
always produced in palladium- or copper-catalyzed coupling
reactions with alkynes, is observed.
−1955; (e) Priebbenow, D. L.; Becker, P.; Bolm, C.
1951
Lett. 2013, 15, 6155−6157; (f) Li, X.; Yang, F.; Wu, Y.; Wu, Y.
−995; (g) Singh, R.; Allam, B. K.; Singh,
Org.
Acknowledgments
Org. Lett. 2014, 16, 992
N.; Kumari, K. Singh, S. K.; Singh, K. N. Adv. Synth. Catal. 2015,
357, 1181−1186; (h) Singh, R.; Allam, B. K.; Singh, N.; Kumari,
K. Singh, S. K.; Singh, K. N. Org. Lett. 2015, 17, 2656−2659; (i)
Hu, G.; Zhang, Y.; Su, J. Li, Z.; Gao, Y.; Zhao, Y. Org. Biomol.
Chem. 2015, 13, 8221−8231; (j) Jadhav, B. D.; Pardeshi, S. K.
RSC Adv. 2016, 6, 14531−14537.
This research was supported by
a National Research
Foundation of Korea (NRF) grant provided by the Korean
government (MSIP) (NRF-2014R1A2A1A11050018, NRF-
2015R1A4A1041036) (S. Lee). The Ministry of Science and
Technology, Taiwan (MOST-105-2113-M-005-001) and the
National Chung Hsing University are also acknowledged for
support (C.Lee). Spectral data were obtained from the Korea
Basic Science Institute, Gwangju branch.
16. (a) Park, K.; Palani, T.; Pyo, A.; Lee, S. Tetrahedron Lett. 2012,
53, 733–737; (b) Park, K.; You. J.-M.; Jeon, S.; Lee, S. Eur. J.
Org. Chem. 2013, 1973–1978; (c) Lim, J.; Choi, J.; Kim, H.-S.;
Kim, I. S.; Nam, K. C.; Kim. J, Lee, S. J. Org. Chem. 2016, 81,
−308
303
17. (a) Moon, J.; Jang, M.; Lee, S. J. Org. Chem. 2009, 74,
.
References and notes
1403−1406; (b) Park, K.; Bae, G.; Moon, J.; Choe, J.; Song, K. H.;
−6251; (c) Park, A.; Park,
Lee, S. J. Org. Chem. 2010, 75, 6244
K.; Kim, Y.; Lee, S. Org. Lett. 2011, 13, 944−947; (d) Min, H.;
Palani, T.; Park, K.; Hwang, J.; Lee, S. J. Org. Chem. 2014, 79,
1. (a) Christmann, U.; Vilar, R. Angew. Chem. Int. Ed. 2005, 44,
366-374; (b) Cahiez, G.; Moyeux, A. Chem. Rev. 2010, 110,
1435−1462; (c) Shi, W.; Liu, C.; Lei, A. Chem. Soc. Rev. 2011,
40, 2761−2776; (d) Rosen, B. M.; Quasdorf, K. W.; Wilson, D.
A.; Zhang, N.; Resmerita, A. M.; Garg, N. K.; Percec, V. Chem.
−6285; (e) Choi,
6279
Asian J. Org. Chem. 2015, 4, 969
H.-S.; Kim, I. S.; Nam, K. C.; Kim, J.; Lee, S. J. Org. Chem.
−308.
J.; Park, K.; Lim, J.; Jung, H. M.; Lee, S.
−974; (f) Lim, J.; Choi, J.; Kim,
2016, 81, 303
−1416; (e) Jana, R.; Pathak, T. P.; Sigman,
Rev. 2011, 111, 1346
M. S. Chem. Rev. 2011, 111, 1417−1492; (f) Xiao, Q.; Zhang, Y.;
18. (a) Palani, T.; Park, K. Kumar, M. R.; Jung, H. M.; Lee, S. Eur. J.
Org. Chem. 2012, 5038–5047; (b) Palani, T.; Park, K.; Song, K.
H.; Lee, S. Adv. Synth. Catal. 2013, 355, 1160–1168; (c) Park, K.;
−247; (g) Cherney, A. H.;
Wang. J. Acc. Chem. Res. 2013, 46, 236
Kadunce, N. T.; Reisman, S. E. Chem. Rev. 2015, 115,
−3325; (d) Choi, J.;
Heo, Y.; Lee, S. Org. Lett. 2013, 15, 3322
Lim, J.; Irudayanathan, F. M.; Kim, H.-S.; Park, J.; Yu, S. B.;
9587−9652.
2. (a) Cabri, W.; Candiani, I. Acc. Chem. Res. 1995, 28, 2
−7; (b) Wu,
X.-F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem. Int.
Jang, Y.; Raja, G. C. E.; Nam, K. C.; Kim, J.; Lee, S. Aisian. J.
−777.
Org. Chem. 2016, 5, 770
Ed. 2010, 49, 9047−9050.
3. (a) Manolikakes, G.; Knochel, P. Angew. Chem. Int. Ed. 2009, 48,
19. Choe, J.; Yang, J.; Park, K.; Palani, T.; Lee, S. Tetrahedron Lett.
2012, 53, 6908−6912.
20. (a) Raja, G. C. E.; Irudayanathan, F. M.; Kim, H.-S.; Kim, J.; Lee,
−209; (b) Eno, M. S.; Lu, A.; Morken, J. P.
205
−7827.
2016, 138, 7824
J. Am. Chem. Soc.
−5249
; (b) Lee, J.; Raja, G. C. E.;
Son, Y.; Jang, J.; Kim, J.; Lee, S. Tetrahedron Lett. 2016, 57,
4824−4828.
S. J. Org. Chem. 2016, 84, 5244
4. Phapale, V. B.; Cárdenas, D. J. Chem. Soc. Rev. 2009, 38,
−1607.
1598
5. (a) Carsten, B.; He, F.; Son, H. J.; Xu, Tao; Yu, L. Chem. Rev.
2011, 111, 1493−1528; (b) Cordovilla, C.; Bartolomé, C.;
Martínez-Ilarduya, J. M.; Espinet, P. ACS Catal. 2015, 5,
21. (a) Borzenko, A.; Loria, N. L. R.; MacQueen, P. M.; Lavoie, C.
M.; McDonald, R.; Stradiotto, M. Angew. Chem. Int. Ed. 2015, 54,
3773−3777; (b) Green, R. A.; Hartwig, J. F. Angew. Chem. Int.
−3053.
3040
−3772.
Ed. 2015, 54, 3768
6. (a) Maluenda, I.; Navarro, O. Molecules 2015, 20, 7528−7557; (b)
Zhang, D.; Wang, Q. Coord. Chem. Rev. 2015, 286, 1−16; (c)
−23.
Dasa, P.; Linertb, W. Coord. Chem. Rev. 2016, 311, 1
−5121.
7. Chinchilla, R.; Nájera, C. Chem. Soc. Rev. 2011, 40, 5084
8. (a) Srimani, D.; Bej, A.; Sarkar, A. J. Org. Chem. 2010, 75,
22. (a) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. J. Am. Chem.
Soc. 2013, 135, 7442−7445; (b) Komeyama, K.; Kashihara, T.;
Takaki, K. Tetrahedron Lett. 2013, 54, 5659−5662; (c) Dorn, S. C.
M.; Olsen, A. K.; Kelemen, R. E.; Shrestha, R.; Weix, D. J.
Tetrahedron Lett. 2015, 56, 3365−3367.
−4299;
Synthesis and Applications; Polshettiwar, V., Asefa, T., Eds.;
4296
(b) Banerjee, A.; Scott, R. W. J. In Nanocatalysis:
23. Theoretically, catalytic amount of manganese can be required to
activate the nickel catalyst precursor. However, when 0.5
equivalent of manganese were employed, the yield of product was
decreased.
Wiley: New York, 2013, pp 133-188.
9. (a) Hartwig, J. F. Angew. Chem. Int. Ed. 1998, 37, 2046−2067; (b)
Urgaonkar, S.; Verkade, J. G. J. Org. Chem. 2004, 69,
9135−9142; (c) Lundgren, R. J.; Stradiotto, M. Aldrichim. Acta
2012, 45, 59−65.
10. (a) Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41,
−4211; (b)
4176
Litte, A. Metal-Catalyzed Coupling Reactions
with Aryl Chlorides, Tosylates and Florides. In Modern Arylation
Methods; Ackermann, L. Eds.; Wiely-VCH Verlag GmbH & Co.
KGaA, Weinheim, 2009; pp 25−67.
11. (a) Sonogashira, S.; Tohda, Y.; Hagihara, Y. Tetrahedron Lett.
1975, 50, 4467−4470; (b) Chinchilla, R.; Nájera, C. Chem. Rev.
−922; (c) Dudnik, A
2007, 107, 874 . S.; Gevorgyan, V. Angew.
Chem. Int. Ed. 2010, 49, 2096−2098; (d) Chinchilla, R.; Nájera, C.
Chem. Soc. Rev. 2011, 40, 5084−5121; (e) Bakherad. M. Appl.
−140.
Organometal. Chem. 2013, 27, 125
12. (a) Liu, Q.; Tang, Z.; Wu, M.; Zhou, Z. Polym. Int. 2014, 63,
381−392; (b) Bunz, U. H. F.; Seehafer, K.; Geyer, F. L.; Bender,
M. Braun, I.; Smarsly, E.; Freudenberg, J. Macromol. Rapid
−1496
Commun. 2014, 35, 1466
; (c) Geng, T.-M.; Zhu, H.; Song,
W.; Zhu, F.; Wang, Y. J. Mater. Sci. 2016, 51, 4104−4114; (d)
Trunk, M.; Herrmann, A.; Bildirir, H.; Yassin, A.; Schmidt, J.;
Thomas, A. Chem. Eur. J. 2016, 22, 7179-7183; (e) Huang, B.;
Zhao, P.; Dai, Y.; Deng, S.; Hu, A. Polym. Chem. 2016, 54,
2285−2290.
13. Handbook of Organopalladium Chemistry for Organic Synthesis;
Negishi, E. Ed.; Wiley, New York, 2002.
14. Moon , J.; Jeong , M.; Nam, H.; Ju, Jin, Moon, J. H.; Jung, H. M.;
−948.
Lee, S. Org. Lett. 2008, 10, 945