10.1002/ejoc.201801692
European Journal of Organic Chemistry
COMMUNICATION
formation in the enzymatic step, conversion was incomplete in
most cases and we observed that reactions stagnated after a
few hours. To exclude inhibitory effects of side-products from the
photocatalytic reactions, we modified the step-wise reaction as
follows: a two-phase SAS-catalysed oxidation resulted in the
accumulation of the intermediate in the organic phase. We then
discarded the SAS-containing aqueous phase and provided
reagents and enzymes dissolved in aqueous reaction buffer to
start the second reaction. In this way, we could further increase
conversions in the enzymatic step. To show the generality of this
approach, we explored different alkane substrates and also
employed ATA, HNL or KRED enzymes with opposite stereo-
preferences to produce both product enantiomers (Scheme 2,
(Figure S4-S17). In total, this approach generated 26 products
with varying conversion, but at least one example with good to
quantitative conversions of the formed intermediate was
obtained with most of the investigated enzymes. Finally, these
photo-chemo-enzymatic transformations were performed on
preparative scale for (R)-mandelonitrile and (R)-benzoin
acknowledge funding from the European Union’s Horizon 2020
MSCA ITN-EID program under grant agreement No. 634200
(Project BIOCASCADES). MH has received funding from the
European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement No. 759262). SS has received funding from the
European Union’s Horizon 2020 MSCA ITN-EJD program under
the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 764920, Project PhotoBioCat).
Keywords: Photocatalysis • chemoenzymatic cascades • photo-
organo catalyst • asymmetric synthesis • enzymes
[1] a) J. H. Schrittwieser, S. Velikogne, M. Hall, W. Kroutil, Chem. Rev.
2018, 118, 270-348; b) J. Muschiol, C. Peters, N. Oberleitner, M. D.
Mihovilovic, U. T. Bornscheuer, F. Rudroff, Chem. Commun. 2015,
51, 5798-5811; c) M. J. Climent, A. Corma, S. Iborra, M. J. Sabater,
ACS Catal. 2014, 4, 870-891; d) M. J. Climent, A. Corma, S. Iborra,
RSC Adv. 2012, 2, 16-58; e) F. Rudroff, M. D. Mihovilovic, H.
Gröger, R. Snajdrova, H. Iding, U. T. Bornscheuer, Nat. Catal.
2018, 1, 12-22; f) T. L. Lohr, T. J. Marks, Nat. Chem. 2015, 7, 477-
482.
synthesis,
respectively.
For
the
(R)-HNL
catalysed
micro-
hydrocyanation of benzaldehyde, we performed
a
aqueous biocatalytic reaction: 1.4 g of essentially pure product
(97.7% ee) was obtained in 85% isolated yield (in the enzymatic
step). The synthesis of (R)-benzoin resulted in 1.8 g product with
>99% ee in 97% isolated yield (see SI for details).
[2]
[3]
[4]
a) Z. Li, R. S. Assary, A. C. Atesin, L. A. Curtiss, T. J. Marks, J.
Am. Chem. Soc. 2014, 136, 104-107; b) X. Y. Wang, R. Rinaldi,
Angew. Chem. Int. Ed. 2013, 52, 11499-11503; Angew. Chem.
2013, 125, 11713-11717.
a) A. Galván, F. J. Fañanás, F. Rodríguez, Eur. J. Inorg. Chem.
2016, 2016, 1306-1313; b) C. A. Huff, M. S. Sanford, J. Am. Chem.
Soc. 2011, 133, 18122-18125; c) M. H. Perez-Temprano, J. A.
Casares, P. Espinet, Chem. - Eur. J. 2012, 18, 1864-1884.
a) Z. Guo, B. Liu, Q. H. Zhang, W. P. Deng, Y. Wang, Y. H. Yang,
Chem. Soc. Rev. 2014, 43, 3480-3524; b) G. Szőllősi, Catal. Sci.
Technol. 2018, 8, 389-422.
Conclusions
In conclusion, the studied combination of photo- and enzyme
catalysis enabled C-H bond transformations to six different
functional groups using cheap alkanes as starting material, e.g.
toluene and cyclohexene derivatives. Amines, cyanohydrins, the
acyloin benzoin, and α-chiral ketones are obtained with excellent
optical purities, which is a key advantage of the photo-chemo-
enzymatic cascade. A one-pot reaction is especially suitable for
enzymes that do not require redox cofactors, such as lyases or
transferases. As a compromise, a stepwise reaction can be
alternatively carried out to overcome the observed
incompatibility between photocatalyst and biocatalyst. We
envision that the efficiency of reactions with redox cofactor-
depending enzymes will be further increased in the future, when
[5]
[6]
T. Chanda, J. C. G. Zhao, Adv. Synth. Catal. 2018, 360, 2-79.
a) Y. F. Zhang, H. Hess, ACS Catal. 2017, 7, 6018-6027; b) M. B.
Quin, K. K. Wallin, G. Zhang, C. Schmidt-Dannert, Org. Biomol.
Chem. 2017, 15, 4260-4271; c) V. Köhler, N. J. Turner, Chem.
Commun. 2015, 51, 450-464.
[7]
[8]
a) S. Choudhury, J.-O. Baeg, N.-J. Park, R. K. Yadav, Green
Chem. 2014, 16, 4389-4400; b) J. A. Macia-Agullo, A. Corma, H.
Garcia, Chem. - Eur. J. 2015, 21, 10940-10959; c) S. H. Lee, D. S.
Choi, S. K. Kuk, C. B. Park, Angew. Chem. Int. Ed. 2018, 57,
7958-7985; Angew. Chem. 2018, 130, 8086.
a) D. C. Fabry, M. Rueping, Acc. Chem. Res. 2016, 49, 1969-
1979; b) N. Hoffmann, ChemCatChem 2015, 7, 393-394; c) M. N.
Hopkinson, A. Tlahuext-Aca, F. Glorius, Acc. Chem. Res. 2016, 49,
2261-2272; d) S. Lerch, L. N. Unkel, M. Brasholz, Angew. Chem.
Int. Ed. 2014, 53, 6558-6562; Angew. Chem. 2014 126, 6676-
6680; e) M. D. Levin, S. Kim, F. D. Toste, ACS Cent. Sci. 2016, 2,
293-301; f) M. Silvi, E. Arceo, I. D. Jurberg, C. Cassani, P.
Melchiorre, J. Am. Chem. Soc. 2015, 137, 6120-6123; g) K. L.
Skubi, T. R. Blum, T. P. Yoon, Chem. Rev. 2016, 116, 10035-
10074; h) L. Wozniak, G. Magagnano, P. Melchiorre, Angew.
Chem. Int. Ed. 2018, 57, 1068-1072; Angew. Chem. 2018, 130,
1080; i) T. P. Yoon, Acc. Chem. Res. 2016, 49, 2307-2315; j) K.
Chen, N. Berg, R. Gschwind, B. König, J. Am. Chem. Soc. 2017,
139, 18444-18447.
photocatalytic water oxidation has been established as
a
generally applicable method for cofactor regeneration.
Furthermore, protein engineering can be used to improve
enzyme resistance to oxidative stress and photo-degradation to
further increase catalyst compatibility in photo-biocatalytic
cascades.
Experimental Section
All experimental details are given in the Supporting information.
[9]
a) C. J. Seel, A. Králík, M. Hacker, A. Frank, B. König, T. Gulder,
ChemCatChem 2018, 10, 3960-3963; b) W. Zhang, E. Fernandez-
Fueyo, Y. Ni, M. van Schie, J. Gacs, R. Renirie, R. Wever, F. G.
Mutti, D. Rother, M. Alcalde, F. Hollmann, Nat. Catal. 2018, 1, 55-
62.
Acknowledgments
We gratefully acknowledge Prof. Wolfgang Kroutil for providing
us the vectors encoding the KREDs. FH thanks for the financial
support by the European Research Council (ERC Consolidator
Grant No. 648026) and the Netherlands Organisation for
Scientific Research (VICI grant, No. 724.014.003). RW and LLM
[10] a) X. Guo, Y. Okamoto, M. R. Schreier, T. R. Ward, O. S. Wenger,
Chem. Sci. 2018, 9, 5052-5056; b) K. Lauder, A. Toscani, Y. Qi, J.
Lim, S. J. Charnock, K. Korah, D. Castagnolo, Angew. Chem. Int.
Ed. 2018, 57, 5803-5807; Angew. Chem. 2018, 130, 5905.
This article is protected by copyright. All rights reserved.