Dalton Transactions
Page 8 of 9
ARTICLE
DOI: 10.1039/C5DT00275C
(theoretically splitting into three lines of equal intensity) were
detected, coordination of might take place via the electronꢀ
poor boron atom, which is attracted by the electronꢀrich Ti(III).
Note that no shfs to boron is observed which can be explained
by a very small coupling constant of boron.24
‡ This work is dedicated to Dr. sc. Vladimir V. Burlakov on the occasion
of his 60th birthday.
6
Once the coordination of
6 is more pronounced, the Ti−P
1
(a) T. B. Marder, Angew. Chem. Int. Ed. 2007, 46, 8116; (b) F. H.
Stephens, V. Pons and R. T. Baker, Dalton Trans., 2007, 2613; (c) C.
W. Hamilton, R. T. Baker, A. Staubitz and I. Manners, Chem. Soc.
Rev., 2009, 38, 279; (d) A. Staubitz, A. P. M. Robertson, M. E. Sloan
and I. Manners, Chem. Rev., 2010, 110, 4023; (e) A. Staubitz, A. P.
M. Robertson and I. Manners, Chem. Rev., 2010, 110, 4079.
interaction is fully split to give an isolated Ti(III) centre. This
species is detected in the final stage of the experiment, denoted
as 3a-III. However, the reason for the decline (conversion to
Ti(IV) in the diluted sample remains unclear.
Regarding the mechanism of the dehydrogenation of
catalysed by the titanocene(III) 2ꢀphosphinoaryloxide complex,
we believe that in a first step, coordination of without
involvement of hydrogen atoms (no shfs to hydrogen) takes
place. Decrease of the Ti−P shfs (Figure 10) could suggest the
presence of a species with a weakened Ti−P contact, which
upon release of H2 could give an aminoborane complex.
6
2
Selected recent examples: (a) M. Käß, A. Friedrich, M. Drees and S.
Schneider, Angew. Chem. Int. Ed., 2009, 48, 905; (b) T. W. Graham,
C.ꢀW. Tsang, X. Chen, R. Guo, W. Jia, S.ꢀM. Lu, C. SuiꢀSeng, C. B.
Ewart, A. Lough, D. Amoroso and K. AbdurꢀRashid, Angew. Chem.
Int. Ed., 2010, 49, 8708; (c) A. Staubitz, M. E. Sloan, A. P. M.
Robertson, A. Friedrich, S. Schneider, P. J. Gates, J. Schmedt auf der
Günne and I. Manners, J. Am. Chem. Soc., 2010, 132, 13332; (d) C. J.
Stevens, R. Dallanegra, A. B. Chaplin, A. S. Weller, S. A.
Macgregor, B. Ward, D. Mckay, G. Alcaraz and S. SaboꢀEtienne,
Chem. Eur. J., 2011, 17, 3011; (e) J. R. Vance, A. P. M. Robertson,
K. Lee and I. Manners, Chem. Eur. J., 2011, 17, 4099; (f) S. S. Mal,
F. H. Stephens and R. T. Baker, Chem. Commun., 2011, 2922; (g) W.
R. H. Wright, E. R. Berkeley, L. R. Alden, R. T. Baker and L. G.
Sneddon, Chem. Commun., 2011, 3177; (h) A. E. W. Ledger, C. E.
Ellul, M. F. Mahon, J. M. J. Williams and M. K. Whittlesey, Chem.
Eur. J., 2011, 17, 8704; (i) B. L. Conley, D. Guess and T. J.
Williams, J. Am. Chem. Soc., 2011, 133, 14212.
6
Subsequent elimination of the aminoborane
7
(which dimerises
to give
8) could regenerate a catalytically active Ti(III)
fragment.
Conclusions
In summary, we have demonstrated a convenient method to
synthesise titanocene (III) 2ꢀphosphinoaryloxide complexes
which contain iꢀpropyl and phenyl moieties, respectively, at the
phosphorus atom. The complexes were fully characterised also
by means of Xꢀray diffraction analysis. These compounds were
tested for the catalytic dehydrogenation of
comparably low performance in toluene. In contrast, the
reaction in neat substrate showed good activity for 3a, which is
in the same range as the best known systems. EPR
investigations using complex 3a showed that Ti(III) species are
present throughout the dehydrogenation process. Additionally,
the weakening of the Ti−P interaction could be derived from
the change in the Ti−P coupling, thus indicating that this is an
3
4
(a) B. L. Davis, D. A. Dixon, E. B. Garner, J. C. Gordon, M. H.
6, showing
Matus, B. Scott and F. H. Stephens, Angew. Chem. Int. Ed., 2009, 48
,
6812; (b) A. D. Sutton, A. K. Burrell, D. A. Dixon, E. B. Garner III,
J. C. Gordon, T. Nakagawa, K. C. Ott, J. P. Robinson and M. Vasiliu,
Science, 2011, 331, 1426.
(a) R. J. Keaton, J. M. Blacquiere and R. T. Baker, J. Am. Chem.
Soc., 2007, 129, 1844; (b) M. Vogt, B. de Bruin, H. Berke, M.
Trincado and H. Grützmacher, Chem. Sci., 2011, 2, 723.
5
6
J. R. Vance, A. Schäfer, A. P. M. Robinson, K. Lee, J. Turner, G. R.
Whitell and I. Manners, J. Am. Chem. Soc., 2014, 136, 3048.
essential step in the dehydrogenation of
titanocene phosphinoaryloxide complexes.
6 using these
(a) D. Pun, E. Lobkovsky and P. J. Chirik, Chem Commun., 2007,
3297; (b) M. E. Sloan, A. Staubitz, T. J. Clark, C. A. Russell, G. C.
LloydꢀJones and I. Manners, J. Am. Chem. Soc., 2010, 132, 3831; (c)
H. Helten, B. Dutta, J. R. Vance, M. E. Sloan, M. F. Haddow, S.
Sproules, D. Collison, G. R. Whittell, G. C. LloydꢀJones and I.
Manners, Angew. Chem. Int. Ed., 2013, 52, 437.
Acknowledgements
We would like to thank our technical and analytical staff, in
particular Andreas Koch, for assistance. T. B. would like to
thank Prof. Uwe Rosenthal (LIKAT) for his support and for
fruitful discussions regarding titanocene chemisty. Financial
support by the Federal Ministry for Education and Research
(BMBF, Project Light2Hydrogen) is gratefully acknowledged.
7
(a) T. Beweries, S. Hansen, M. Kessler, M. Klahn and U. Rosenthal,
Dalton Trans., 2011, 40, 7689; (b) T. Beweries, J. Thomas, M.
Klahn, A. Schulz, D. Heller and U. Rosenthal, ChemCatChem, 2011,
3
, 1865; (c) J. Thomas, M. Klahn, A. Spannenberg and T. Beweries,
Notes and references
LeibnizꢀInstitut für Katalyse e.V. an der Universität Rostock, Albertꢀ
Dalton Trans., 2013, 42, 14668.
a
8
9
S. Hausdorf, F. Baitalow, G. Wolf and F. Mertens, Int. J. Hydrogen
Energy, 2008, 33, 608.
EinsteinꢀStr. 29a, 18059 Rostock, Germany, Fax: (+49) 381 1281 51104,
Eꢀmail: torsten.beweries@catalysis.de
a) W. Luo, P. G. Campbell, L. N. Zakharov and S.ꢀY. Liu, J. Am.
Chem. Soc., 2011, 133, 19326. b) W. Luo, D. Neiner, A. Karkamkar,
† Electronic Supplementary Information (ESI) available: Crystallographic
details, volumetric curves, NMR studies and sample gas chromatograms.
See DOI: 10.1039/b000000x/
8 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2012