I. Alshibane et al.
7. Ordomsky VV, Legras B, Cheng K, Paul S, Khodakov AY (2015)
Catal Sci Technol 5(3):1433
Co3Mo3C. Amongst the evaluated materials, the Co6Mo6N
sample showed the highest activity of about 1.8 mmol H2
g−1 min−1, comparable to those observed for iron oxide sys-
tems under similar reaction conditions. The results revealed
that a significant phase transformation from metal nitrides
to Co3Mo3C and β-Mo2C occurred throughout the methane
cracking reaction. Interestingly, in the case of Co6Mo6C
relocation of the carbon located in the 0 0 0 (8a) site to 1/8
1/8 1/8 (16c) sites resulting in the formation of Co3Mo3C
was observed. Furthermore, results from Raman spectros-
copy and powder XRD show that at least two forms of
carbon are formed on the catalyst surface during methane
decomposition.
8. Vo D-VN, Adesina AA (2011) Chap. 7: evaluation of promoted
Mo carbide catalysts for Fischer-Tropsch synthesis: synthesis,
characterisation, and time-on-stream behaviour. In: de Klerk A,
King DL (eds) Synthetic liquids production and refining, vol 1084.
ACS, Washington, DC, pp 155–184
9. Ranhotra GS, Bell AT, Reimer JA (1987) J Catal 108(1):40
10. Kojima I, Miyazaki E, Inoue Y, Yasumori I (1982) J Catal
73(1):128
11. Lee JS, Yeom MH, Park KY, Nam I-S, Chung JS, Kim YG, Moon
SH (1991) J Catal 128(1):126
12. Perret N, Wang X, Delannoy L, Potvin C, Louis C, Keane MA
(2012) J Catal 286:172
13. Jiang J, Liu Q, Zeng C, Ai L (2017) J Mater Chem A 5(32):16929
14. Choi J-G (1999) J Catal 182(1):104
15. Pansare SS, Torres W, Goodwin JG (2007) Catal Commun
8(4):649
Acknowledgements We are grateful to Mr M. G. Reddy form the Uni-
versity of Glasgow for conducting elemental analyses. JSJH wishes to
acknowledge the Engineering and Physical Sciences Research Council
for support through grant EP/L02537X/1. JLR is grateful to Cona-
cyt for funding a sabbatical stay at the University of Glasgow and to
LINAN-IPICYT for electron microscope facilities.
16. AlShibane I, Daisley A, Hargreaves JSJ, Hector AL, Laassiri S,
Rico JL, Smith RI (2017) ACS Sustain Chem Eng 5(10):9214
17. Abbas HF, Wan Daud WMA (2010) Int J Hydrogen Energy
35(3):1160
18. Li Y, Li D, Wang G (2011) Catal Today 162(1):1
19. Amin AM, Croiset E, Epling W (2011) Int J Hydrogen Energy
36(4):2904
Compliance with Ethical Standards
20. Hunter SM, McKay D, Smith RI, Hargreaves JSJ, Gregory DH
(2010) Chem Mater 22(9):2898
21. Xu K, Chao J, Li W, Liu Q, Wang Z, Liu X, Zou R, Hu J (2014)
RSC Adv 4(65):34307
Conflict of interest The authors declare no conflict of interest.
22. Alconchel S, Sapina F, Martinez E (2004) Dalton Trans (16:):2463
23. Schmittinger W, Vahidi A (2008) J Power Sources 180(1):1
24. Choudhary TV, Aksoylu E, Goodman DW (2003) Nonoxidative
activation of methane. Catal Rev 45(1):151
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
25. Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund (2006) Nano Lett
6(12):2667
26. Cançado LG, Pimenta MA, Neves BRA, Dantas MSS, Jorio A
(2004) Phy Rev Lett 93(24):247401
27. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA,
Car R (2008) Nano Lett 8(1):36
References
28. Livneh T, Haslett TL, Moskovits M (2002) Phy Rev B
66(19):195110
1. Alexander AM, Hargreaves JSJ (2010) Chem Soc Rev 39(11):4388
2. Hargreaves JSJ (2013) Coord Chem Rev 257:(13–14) 2015
3. Hargreaves JSJ, McFarlane AR, Laassiri S (eds) (2018) Alterna-
tive catalytic materials: carbides, nitrides, phosphides and amor-
phous boron alloys. RSC, London
29. AlShibane I, Hargreaves JSJ, Hector AL, Levason W, McFarlane
A (2017) Dalton Trans 46(27):8782
30. Alharthi A, Blackley RA, Flowers TH, Hargreaves JSJ, Pul-
ford ID, Wigzell J, Zhou W (2014) J Chem Technol Biotechnol
89(9):1317
4. Levy RB, Boudart M (1973) Science 181:547
5. Oyama ST (1992) Catal Today 15:179
31. Izhar S, Kanesugi H, Tominaga H, Nagai M (2007) Appl Catal A:
Gen 317:82
6. Weller S, Hofer LJE, Anderson RB (1948) J Am Chem Soc
70(2):799
1 3