[
9] S.D. Angeli, G. Monteleone, A. Giaconia, A.A. Lemonidou, State-of-the-art catalysts for CH
temperature, International Journal of Hydrogen Energy, 39 (2014) 1979-1997.
10] M.A. Nieva, M.M. Villaverde, A. Monzón, T.F. Garetto, A.J. Marchi, Steam-methane reforming at low temperature on
nickel-based catalysts, Chemical Engineering Journal, 235 (2014) 158-166.
11] T. Nozaki, K. Okazaki, Non-thermal plasma catalysis of methane: Principles, energy efficiency, and applications,
Catalysis Today, 211 (2013) 29-38.
12] X. Zhang, B. Wang, Y. Liu, G. Xu, Conversion of Methane by Steam Reforming Using Dielectric-barrier Discharge,
Chinese Journal of Chemical Engineering, 17 (2009) 625-629.
13] A.M. Montoro-Damas, A. Gómez-Ramírez, A.R. Gonzalez-Elipe, J. Cotrino, Isotope labelling to study molecular
fragmentation during the dielectric barrier discharge wet reforming of methane, Journal of Power Sources, 325 (2016) 501-
05.
14] Q. Liu, H. Zheng, R. Yang, G. Pan, Experimental study on chemical recuperation using hybrid dielectric barrier
4
steam reforming at low
[
[
[
[
5
[
discharge-catalytic methane-steam reforming, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of
Power and Energy, 228 (2014) 451-461.
[
15] J.-L. Liu, R. Snoeckx, M.S. Cha, Steam reforming of methane in a temperature-controlled dielectric barrier discharge
reactor: the role of electroninduced chemistry versus thermochemistry, Journal of Physics D: Applied Physics, 51 (2018)
85201-338510.
16] M.-w. Li, G.-h. Xu, Y.-l. Tian, L. Chen, H.-f. Fu, Carbon Dioxide Reforming of Methane Using DC Corona Discharge
Plasma Reaction, The Journal of Physical Chemistry A, 108 (2004) 1687-1693.
17] D. Czylkowski, B. Hrycak, M. Jasiński, M. Dors, J. Mizeraczyk, Microwave plasma-based method of hydrogen
production via combined steam reforming of methane, Energy, 113 (2016) 653-661.
18] Y.-F. Wang, C.-H. Tsai, W.-Y. Chang, Y.-M. Kuo, Methane steam reforming for producing hydrogen in an
atmospheric-pressure microwave plasma reactor, International Journal of Hydrogen Energy, 35 (2010) 135-140.
19] D.H. Choi, S.M. Chun, S.H. Ma, Y.C. Hong, Production of hydrogen-rich syngas from methane reforming by steam
microwave plasma, Journal of Industrial and Engineering Chemistry, 34 (2016) 286-291.
20] K. Li, J.-L. Liu, X.-S. Li, X.-B. Zhu, A.-M. Zhu, Post-plasma catalytic oxidative CO
based catalysts, Catalysis Today, 256 (2015) 96-101.
21] K. Li, J.-L. Liu, X.-S. Li, X. Zhu, A.-M. Zhu, Warm plasma catalytic reforming of biogas in a heat-insulated reactor:
Dramatic energy efficiency and catalyst auto-reduction, Chemical Engineering Journal, 288 (2016) 671-679.
22] J.-L. Liu, Z. Li, J.-H. Liu, K. Li, H.-Y. Lian, X.-S. Li, X. Zhu, A.-M. Zhu, Warm-plasma catalytic reduction of CO
with CH , Catalysis Today, (2018) doi: 10.1016/j.cattod.2018.1005.1046.
23] Y.N. Chun, Y.C. Yang, K. Yoshikawa, Hydrogen generation from biogas reforming using a gliding arc plasma-catalyst
reformer, Catalysis Today, 148 (2009) 283-289.
24] N. Rueangjitt, T. Sreethawong, S. Chavadej, H. Sekiguchi, Plasma-catalytic reforming of methane in AC microsized
gliding arc discharge: Effects of input power, reactor thickness, and catalyst existence, Chemical Engineering Journal, 155
2009) 874-880.
25] F. Zhu, H. Zhang, X. Yan, J. Yan, M. Ni, X. Li, X. Tu, Plasma-catalytic reforming of CO
catalysts in a rotating gliding arc reactor, Fuel, 199 (2017) 430-437.
26] K. Pornmai, S. Suvachitanont, S. Chavadej, Reforming of CO
discharge for hydrogen production, International Journal of Green Energy, 15 (2018) 441-453.
27] B. Li, Z. Xu, F. Jing, S. Luo, N. Wang, W. Chu, Improvement of catalytic stability for CO
copper promoted Ni-based catalyst derived from layered-double hydroxides, Journal of Energy Chemistry, 25 (2016) 1078-
085.
28] F. Wang, B. Han, L. Zhang, L. Xu, H. Yu, W. Shi, CO2 reforming with methane over small-sized Ni@SiO
with unique features of sintering-free and low carbon, Applied Catalysis B: Environmental, 235 (2018) 26-35.
29] E.-h. Yang, Y.S. Noh, G.H. Hong, D.J. Moon, Combined steam and CO reforming of methane over La1-xSr
perovskite oxides, Catalysis Today, 299 (2018) 242-250.
30] H.-Y. Lian, X.-S. Li, J.-L. Liu, X. Zhu, A.-M. Zhu, Oxidative pyrolysis reforming of methanol in warm plasma for an
on-board hydrogen production, International Journal of Hydrogen Energy, 42 (2017) 13617-13624.
31] W. Piavis, S. Turn, An experimental investigation of reverse vortex flow plasma reforming of methane, International
Journal of Hydrogen Energy, 37 (2012) 17078-17092.
32] X. Liao, Y. Zhang, M. Hill, X. Xia, Y. Zhao, Z. Jiang, Highly efficient Ni/CeO
hydrogenation of maleic anhydride, Applied Catalysis A: General, 488 (2014) 256-264.
33] A. Löfberg, J. Guerrero-Caballero, T. Kane, A. Rubbens, L. Jalowiecki-Duhamel, Ni/CeO
vectors for the chemical looping dry reforming of methane for syngas production, Applied Catalysis B: Environmental, 212
2017) 159-174.
34] L.-Y. Lin, H. Bai, Promotional effects of manganese on the structure and activity of Ce–Al–Si based catalysts for low-
3
[
[
[
[
[
2
reforming of methane over Ni-
[
[
2
4
[
[
(
[
2
-rich biogas over Ni/γ-Al
-containing natural gas with steam in AC gliding arc
reforming of methane by
2 3
O
[
2
[
2
1
[
2
catalysts
NiO
3
[
2
x
[
[
[
2
catalyst for the liquid phase
based catalysts as oxygen
[
2
(
[
temperature oxidation of acetone, Chemical Engineering Journal, 291 (2016) 94-105.
ACKNOWLEDGMENT
1
9