Mendeleev Commun., 2020, 30, 276–278
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2020.05.004.
ꢊꢂ min
ꢉ0 min
ꢈꢂ min
ꢇ0 min
References
1 Handbook of Hydrogen Energy, 1st edn., eds. S. A. Sherif, D.Y. Goswami,
E. K. (Lee) Stefanakos and A. Steinfeld, CRC Press, 2014.
2 L. H. Jepsen, M. B. Ley, Y.-S. Lee, Y. W. Cho, M. Dornheim, J. O.
Jensen, Y. Filinchuk, J. E. Jørgensen, F. Besenbacher and T. R. Jensen,
Mater. Today, 2014, 17, 129.
3 A. A. Semenova, A. B. Tarasov and E. A. Goodilin, Mendeleev Commun.,
2019, 29, 479.
4 D. Gelman and S. Musa, ACS Catal., 2012, 2, 2456.
5 J. R. Khusnutdinova and D. Milstein, Angew. Chem., Int. Ed., 2015, 54,
12236.
ꢄꢂ min
ꢄ min
6 L. Alig, M. Fritz and S. Schneider, Chem. Rev., 2019, 119, 2681.
7 D. Gelman and R. Romm, Top. Organomet. Chem., 2013, 40, 289.
8 S. Musa, O. A. Filippov, N. V. Belkova, E. S. Shubina, G. A. Silantyev,
L. Ackermann and D. Gelman, Chem. Eur. J., 2013, 19, 16906.
9 S. Musa, A. Ghosh, L. Vaccaro, L. Ackermann and D. Gelman, Adv.
Synth. Catal., 2015, 357, 2351.
ꢀ2ꢇ.2ꢂ
ꢀꢁ.ꢂ
ꢀꢃ.0
ꢀꢃ.ꢂ
ꢀꢄ0.0
dꢅꢆꢆm
Figure 4 1H NMR monitoring of the DMAB dehydrogenation in the
presence of complex 1 (1 equiv.) in CD2Cl2 at 272.5 K.
10 S. Cohen, A. N. Bilyachenko and D. Gelman, Eur. J. Inorg. Chem.,
2019, 3203.
11 S. Mujahed, F. Valentini, S. Cohen, L. Vaccaro and D. Gelman,
ChemSusChem, 2019, 12, 4693.
12 S. Musa, I. Shaposhnikov, S. Cohen and D. Gelman, Angew. Chem., Int.
Ed., 2011, 50, 3533.
13 A. Friedrich and S. Schneider, ChemCatChem, 2009, 1, 72.
14 G. E. Dobereiner and R. H. Crabtree, Chem. Rev., 2010, 110, 681.
15 M. C. Denney, V. Pons, T. J. Hebden, D. M. Heinekey and K. I. Goldberg,
J. Am. Chem. Soc., 2006, 128, 12048.
16 L. Luconi, E. S. Osipova, G. Giambastiani, M. Peruzzini, A. Rossin,
N. V. Belkova, O. A. Filippov, E. M. Titova, A. A. Pavlov and E. S.
Shubina, Organometallics, 2018, 37, 3142.
17 E. M. Titova, E. S. Osipova, A. A. Pavlov, O. A. Filippov, S. V. Safronov,
E. S. Shubina and N. V. Belkova, ACS Catal., 2017, 7, 2325.
18 E. S. Osipova, O.A. Filippov, E. S. Shubina and N.V. Belkova, Mendeleev
Commun., 2019, 29, 121.
19 I. E. Golub, E. S. Gulyaeva, O. A. Filippov, V. P. Dyadchenko, N. V.
Belkova, L. M. Epstein, D. E. Arkhipov and E. S. Shubina, J. Phys.
Chem. A, 2015, 119, 3853.
20 G. A. Silantyev, O. A. Filippov, S. Musa, D. Gelman, N. V. Belkova,
K. Weisz, L. M. Epstein and E. S. Shubina, Organometallics, 2014, 33,
5964.
evolution begins above 250 K, thissignal is gradually transformed
into the yet another triplet at –9.95 ppm (2JP–H 19 Hz, Figure 4).
This suggests that the remaining iridium hydride catalyst preserves
the mer-configuration of ligand, but is formally pentacoordinated
(mer-1, see Scheme 2).20,21 There are another two hydride
resonances in the spectra, which appear upon the mixing and
transform one into another during the reaction. They are broad
signals at –2.1 and –8.6 ppm (Figure S6), which belong to
complexes 1·DMAB and 1·(H2B·NMe2), respectively.16–18,22
Complex mer-1 remains catalytically active, so the addition of
new portion of DMAB to the reaction mixture after the first run
initiates another dehydrogenation cycle, which proceeds at the
same rate (Figure S7).
In conclusion, the peculiarities of complex 1, which promote
dehydrogenation of alcohols, also lead to its decreased efficiency
in the dehydrogenation of amine–boranes. The salient
bifunctionality of amine–boranes results in their binding to the
dangling OH group, thus providing the additional stabilization to
the Ir···OH bond. That, in turn, hampers the BH coordination to
iridium, necessary for the dehydrogenation to proceed. This explains
the unexpected decrease in the reaction rate on going from
Me2NH·BH3 to ButNH2·BH3 and NH3·BH3.
21 G. A. Silantyev, E. M. Titova, O. A. Filippov, E. I. Gutsul, D. Gelman
and N. V. Belkova, Russ
Nauk, Ser. Khim., 2015, 2806).
. Chem. Bull., Int. Ed., 2015, 64, 2806 (Izv. Akad.
22 C. J. Stevens, R. Dallanegra, A. B. Chaplin, A. S. Weller, S. A. Macgregor,
B. Ward, D. McKay, G. Alcaraz and S. Sabo-Etienne, Chem. – Eur. J.,
2011, 17, 3011.
This work was supported by the Russian Science Foundation
(grant no. 19-13-00459). NMR spectroscopic data were acquired
using the equipment of Center for Molecular Composition Studies
at theA. N. Nesmeyanov Institute of Organoelement Compounds
of the Russian Academy of Sciences with the financial support
from the Ministry of Science and Higher Education of the Russian
Federation.
Received: 6th December 2019; Com. 19/6081
– 278 –