Inorg. Chem. 1999, 38, 1579-1584
1579
Mechanism of CO2 and H+ Reduction by Ni(cyclam)+ in Aqueous Solution. A Pulse and
Continuous Radiolysis Study
Craig A. Kelly,*,†,1 Elliott L. Blinn,‡,1 Nadia Camaioni,2 Mila D’Angelantonio,2 and
Quinto G. Mulazzani*,2
Istituto di Fotochimica e Radiazioni d’Alta Energia del CNR, Via P. Gobetti 101, 40129 Bologna, Italy,
and Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University,
Bowling Green, Ohio 43403
ReceiVed July 28, 1998
The reduction of CO2 and H+ by Ni(cyclam)+ in aqueous solution was found to proceed by the reduction of
Ni(cyclam)(CO2)+ or Ni(cyclam)(H)2+ by Ni(cyclam)+. At ambient temperature the rate constants for the
bimolecular reactions are 1.6 × 108 and 7.2 × 107 M-1 s-1, respectively. Continuous γ-radiolysis studies have
demonstrated nearly quantitative formation of CO from two Ni(cyclam)+ at pH 5.2 under 1 atm of CO2 and in
the presence of formate. Under the same conditions, but at low CO2 concentration, the reduction of protons was
found to compete with CO2 reduction.
Introduction
CO2 to the +1 oxidation-state metal centers, little knowledge
exists on the mechanism of H2 and CO evolution from these
Since the work of Brown et al.3 and that of Fisher and
Eisenberg4 almost 20 years ago, a remarkable effort has been
put forward to study the photo- and electrochemical reduction
of protons and/or CO2 by cobalt(II) and nickel(II) macrocycle
complexes. As a result, considerable knowledge now exists on
the chemistry and physical properties of many Co+ and Ni+
macrocycle complexes in the solid state,5 in solution,5-9 and at
an electrode.10-18 However, despite the accumulation of kinetic
and thermodynamic information on the binding of protons and
intermediate species. A notable exception is the work of Fujita
et al. who studied the slow reduction of CO2 by CoL+, where
L is 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-
4,11-diene, in acetonitrile and found it to proceed by a second-
order process involving two CoL+ centers.11a
Until recently,18 the most efficient and selective catalyst for
the reduction of CO2 to CO in acidic (pH 4) aqueous solution
was the complex Ni(cyclam)2+, where cyclam ) 1,4,8,11-
tetraazacyclotetradecane.12a,b Hydrogen evolution in this system
was observed below pH 4.12b While equally high current
efficiencies were observed earlier,4 the selectivity displayed
toward CO2 in the presence of protons is a remarkable aspect
of Ni(cyclam)+ chemistry. Introducing Ni(cyclam)+ into the
photochemical system of Brown et al.3 has been demonstrated
to reduce CO2 at pH 5 although with low yields for CO
formation.8b
† Present address: Department of Chemistry, Johns Hopkins University,
3400 North Charles St., Baltimore, MD 21218.
‡Deceased, May 7, 1997.
(1) Bowling Green State University.
(2) Istituto FRAE-CNR.
(3) Brown, G. M.; Brunschwig, B. S.; Creutz, C.; Endicott, J. F.; Sutin,
N. J. Am. Chem. Soc. 1979, 101, 1298-1300.
(4) Fisher, B.; Eisenberg, R. J. Am. Chem. Soc. 1980, 102, 7361-7363.
(5) (a) Szalda, D. J.; Fujita, S.; Creutz, C. Inorg. Chem. 1989, 28, 1446-
1450. (b) Fujita, E.; Creutz, C.; Sutin, N.; Szalda, D. J. J. Am. Chem.
Soc. 1991, 113, 343-353. (c) Szalda, D. J.; Fujita, E.; Sanzenbacher,
R.; Paulus, H.; Elias, H. Inorg. Chem. 1994, 33, 5855-5863.
(6) (a) Tait, A. M.; Hoffman, M. Z.; Hayon, E. J. Am. Chem. Soc. 1976,
98, 86-93. (b) Tait, A. M.; Hoffman, M. Z.; Hayon, E. Inorg. Chem.
1976, 15, 934-939.
(7) (a) Jubran, N.; Ginzburg, G.; Cohen, H.; Meyerstein, D. J. Chem. Soc.,
Chem. Commun. 1982, 517-519. (b) Jubran, N.; Cohen, H.; Meyer-
stein, D. Isr. J. Chem. 1985, 25, 118-121. (c) Jubran, N.; Ginzburg,
G.; Cohen, H.; Koresh, Y.; Meyerstein, D. Inorg. Chem. 1985, 24,
251-258. (d) Jubran, N.; Meyerstein, D.; Cohen, H. Inorg. Chim. Acta
1986, 117, 129-132.
(8) (a) Grant, J. L.; Goswami, K.; Spreer, L. O.; Otvos, J. W.; Calvin, M.
J. Chem. Soc., Dalton Trans. 1987, 2105-2109. (b) Craig, C. A.;
Spreer, L. O.; Otvos, J. W.; Calvin, M. J. Phys. Chem. 1990, 94, 7957-
7960.
(9) (a) Creutz, C.; Schwarz, H. A.; Wishart, J. F.; Fujita, E.; Sutin, N. J.
Am. Chem. Soc. 1989, 111, 1153-1154. (b) Creutz, C.; Schwarz, H.
A.; Wishart, J. F.; Fujita, E.; Sutin, N. J. Am. Chem. Soc. 1991, 113,
3361-3371.
(10) Schmidt, M. H.; Miskelly, G. M.; Lewis, N. S. J. Am. Chem. Soc.
1990, 112, 3420-3426.
(11) (a) Fujita, E.; Szalda, D. J.; Creutz, C.; Sutin, N. J. Am. Chem. Soc.
1988, 110, 4870-4871. (b) Fujita, E.; Creutz, C.; Sutin, N.; Brun-
schwig, B. S. Inorg. Chem. 1993, 32, 2657-2662. (c) Fujita, E.;
Creutz, C. Inorg. Chem. 1994, 33, 1729-1730.
Electrochemical investigations of the reduction of CO2 by
Ni(cyclam)+ have demonstrated that the active catalyst is
absorbed on the surface of the electrode and have suggested
(12) (a) Beley, M.; Collin, J.-P.; Ruppert, R.; Sauvage, J.-P. J. Chem. Soc.,
Chem. Commun. 1984, 1315-1316. (b) Beley, M.; Collin, J.-P.;
Ruppert, R.; Sauvage, J.-P. J. Am. Chem. Soc. 1986, 108, 7461-7467.
(c) Collin, J.-P.; Jouaiti, A.; Sauvage, J.-P. Inorg. Chem. 1988, 27,
1986-1990.
(13) Tinnemans, A. H. A.; Koster, T. P. M.; Thewissen, D. H. M. W.;
Mackor, A. Recl. TraV. Chim. Pays-Bas 1984, 103, 288-295.
(14) Pearce, D. J.; Pletcher, D. J. Electroanal. Chem. 1986, 197, 317-
330.
(15) (a) Fujihira, M.; Hirata, Y.; Suga, K. J. Electroanal. Chem. 1990, 292,
199-215. (b) Hirata, Y.; Suga, K.; Fujihira, M. Chem. Lett. 1990,
1155-1158. (c) Fujihira, M.; Nakamura, Y.; Hirata, Y.; Akiba, U.;
Suga, K. Denki Kagaku 1991, 59, 532-539.
(16) (a) Balazs, G. B.; Anson, F. C. J. Electroanal. Chem. 1992, 322, 325-
345. (b) Balazs, G. B.; Anson, F. C. J. Electroanal. Chem. 1993, 361,
149-157.
(17) (a) Smith, C. I.; Crayston, J. A.; Hay, R. W. J. Chem. Soc., Dalton
Trans. 1993, 3267-3269. (b) Hay, R. W.; Kinsman, B.; Smith, C. I.
Polyhedron 1995, 14, 1245-1249.
(18) Fujita, E.; Haff, J.; Sanzenbacher, R.; Elias, H. Inorg. Chem. 1994,
33, 4627-4628.
10.1021/ic980902p CCC: $18.00 © 1999 American Chemical Society
Published on Web 03/16/1999