The Journal of Physical Chemistry B
ARTICLE
conditions created by acoustic bubble collapse and related
sonochemical activity.
(6) Petrier, C.; Jeunet, A.; Luche, J. L.; Reverdy, G. J. Am. Chem. Soc.
1992, 114, 3148–3150.
(
7) Hua, I.; Hoffmann, M. R. Environ. Sci. Technol. 1997, 31, 2237–
243.
8) Mendez-Arriaga, F.; Torres-Palma, R. A.; Petrier, C.; Esplugas,
2
4. CONCLUSIONS
(
Ultrasonic frequency is a critical parameter in the sonolysis of
S.; Gimenez, J.; Pulgarin, C. Water Res. 2008, 42, 4243–4248.
(9) Jiang, Y.; Petrier, C.; Waite, T. D. Ultrasonics Sonochemistry 2006,
formic acid in aqueous solutions. The total yield of 0.1-3.0 M
HCOOH sonochemical degradation increases approximately 6-
to 8-fold when the frequency increases from 20 kHz to 200 or
1
3, 415–422.
10) Koda, S.; Kimura, T.; Kondo, T.; Mitome, H. Ultrasonics
Sonochemistry 2003, 10, 149–156.
11) Petrier, C.; Lamy, M. F.; Francony, A.; Benahcene, A.; David,
B.; Renaudin, V.; Gondrexon, N. J. Phys. Chem. 1994, 98 (41), 10514–
0520.
12) Berlan, J.; Trabelsi, F.; Delmas, H.; Wilhelm, A. M.; Petrignani,
(
6
07 kHz under argon atmosphere. In agreement with the
(
literature, CO , CO, H , and oxalic acid are the main products
2
2
of HCOOH sonolysis. Moreover for the first time, formaldehyde
and methane were detected. In a diluted solution (0.1 M
HCOOH), sonochemical degradation occurs mostly by HCOOH
decarboxylation in the liquid reaction zone at the bubble/solution
interface for all ultrasonic frequencies studied. When the HCOOH
concentration becomes higher (1.0-3.0 M), degradation also
1
(
J. F. Ultrasonics Sonochemistry 1994, 1, S97–S102.
(13) Chen, J. W.; Chang, J. A.; Smith, G. V. Chem. Eng. Prog. S. Ser.
1971, 67, 18–26.
(14) Petrier, C.; Francony, A. Water Sci. Technol. 1997, 35, 175–180.
•
(
15) Okouchi, S.; Nojima, O.; Arai, T. Water Sci. Technol. 1992, 26,
053–2056.
16) Hung, H. M.; R. Hoffmann, M. R. J. Phys. Chem A 1999, 103,
734–2739.
occurs via simultaneous OH radical scavenging. Under high-
2
2
frequency ultrasound the reaction is also influenced by HCOOH
dehydration. The most striking feature of this work is that the high-
frequency ultrasonic treatment initiated secondary hydrogenation
(
(
(
17) Becket, M. A.; Hua, I. J. Phys. Chem. A 2001, 105, 3796–3802.
18) Gogate, P. R.; Mujumdar, S.; Pandit, A. B. Adv. Environ. Res.
reactions of CO and CO. Under high ultrasonic frequency CO2
2
reacted with H to produce CO. Thereby, at 200 and 607 kHz CO
2
2
003, 7, 283–299.
is the major product and the yield of H is even lower than that
2
(19) Hart, E. J.; Henglein, A. Radiat. Phys. Chem. 1988, 32, 11–13.
obtained during pure water sonolysis. Sonochemically driven
Fischer-Tropsch hydrogenation of CO led to the formation of
methane and formaldehyde as byproduct of HCOOH degradation.
Finally, we found catalytic decomposition of sonochemically
formed H O on the surface of titanium particles formed during
cavitation erosion of the ultrasonic probe under low-frequency
ultrasound. This finding is important for the proper interpretation
of sonochemical experiments.
(20) Haïssinsky, M.; Klein, R. J. Chim. Phys. Phys. Chim. Biol. 1968,
65, 336–344.
(21) Gogate, P. R.; Pandit, A. B.; Wilhelm, A. M.; Ratsimba, B.;
Delmas, H. Water Res. 2006, 40, 1697–1705.
(
22) Nikitenko, S. I.; Le Naour, C.; Moisy, P. Ultrasonics Sonochem-
istry 2007, 14, 330–336.
23) Karimi, A.; Martin, J. L. Cavitation Erosion of Materials. Int.
Met. Rev. 1986, 31, 1–26.
24) Fatjo, G. A.; P ꢁe rez, A. T.; Hadfield, M. Ultrasonics Sonochemistry
011, 18, 73–79.
2
2
(
(
2
’
ASSOCIATED CONTENT
(25) Ito, T.; Yoshida, F. J. Chem. Eng. Data 1963, 8, 315–320.
(
26) Conti, J. J.; Othmer, D. F.; Gilmont, R. J. Chem. Eng. Data 1960,
S
Supporting Information. Additional figures and tables,
b
5, 301–307.
with a more detailed description of the materials and methods
used for the study. This material is available free of charge via the
Internet at http://pubs.acs.org.
(27) Saito, K.; Kakumoto, T.; Kuroda, H.; Torii, S.; Imamura, A.
J. Chem. Phys. 1984, 80, 4989–4994.
(28) Yu, J.; Savage, P. E. Ind. Eng. Chem. Res. 1998, 37, 2–10.
(
29) Chen, H. T.; Chang, J. G.; Chen, H. L. J. Phys. Chem. A 2008,
12, 8093–8099.
30) Bjerre, A. B.; Sorensen, E. Ind. Eng. Chem. Res. 1992, 31, 1574–
1577.
1
’
AUTHOR INFORMATION
(
Corresponding Author
(
(
(
31) Henglein, A. Z. Naturforsch. 1985, 40b, 100–107.
32) Harada, H. Ultrasonics Sonochemistry 1998, 5, 73–77.
33) Harada, H.; Hosoki, C.; Ishikane, M. J. J. Photochem. Photobiol.
*
E-mail: serguei.nikitenko@cea.fr. Phone: þ33(0) 466 339 251.
Fax: þ33(0) 466 796 027.
A 2003, 160, 11–17.
34) Anderson, R. B. The Fischer-Tropsch Synthesis; Academic
Press, Inc.: New York, 1984.
35) Price, G. J.; Harris, N. K.; Stewart, A. J. Ultrasonics Sonochemistry
010, 17, 30–33.
36) Ashokkumar, M.; Lee, J.; Iida, Y.; Yasui, K.; Kozuka, T.; Tuziuti,
T.; Towata, A. Phys. Chem. Chem. Phys. 2009, 11, 10118–10121.
37) Pflieger, R.; Brau, H.-P.; Nikitenko, S. I. Chem.—Eur. J. 2010,
6, 11801–11803.
’
ACKNOWLEDGMENT
(
N. Navarro thanks CEA/DEN/MAR/DRCP/SCPS for finan-
(
cial support of her PhD thesis. The authors are grateful to
J.P Donnarel and D. Sans for their help in HPLC and FTIR
analysis.
2
(
(
’
REFERENCES
1
(1) Andreozzi, R.; Caprio, V; Insola, A.; Marotta, R Catal. Today
1
999, 53, 51–59.
(
(
2) Adewuyi, Y. G. Ind. Eng. Chem. Res. 2001, 40, 4681–4715.
3) Mason, T. J.; Lorimer; J; P. Applied Sonochemistry. The Uses of
Power Ultrasound in Chemistry and Processing; Wiley-VCH: Weinheim,
2
1
2
002.
(
4) Suslick, K. S.; Hammerton, D. A.; Cline, R. E. J. Am. Chem. Soc.
986, 108, 5641–5642.
(
5) Petrier, C.; Francony, A. Ultrasonics Sonochemistry 1997, 4,
95–300.
2
029
dx.doi.org/10.1021/jp109444h |J. Phys. Chem. B 2011, 115, 2024–2029