6
90
N. Amann, H.-A. Wagenknecht
LETTER
difference between MeCN ( em = 477 nm) and MeOH
( em = 485; Figure 2). Currently, time-resolved spectro-
scopic measurements on the femtosecond time scale are
conducted in order to detect the intermediates by transient
absorption, to characterize the nature of the charge-sepa-
rated species, and, finally, to explore the detailed mech-
anisms of the charge transfer processes observed in the
(7) (a) Boon, E. M.; Ceres, D.; Drummond, T. G.; Hill, M. G.;
Barton, J. K. Nat. Biotechnol. 2000, 18, 1096. (b) Jackson,
N. M.; Hill, M. G. Curr. Opin. Chem. Biol. 2001, 5, 209.
(c) Fink, H.-W.; Schönenberger, C. Nature (London) 1999,
398, 407. (d) Porath, D.; Bezryadin, A.; de Vries, S.;
Dekker, C. Nature (London) 2000, 403, 635.
8) Murphy, C. J.; Arkin, M. R.; Jenkins, Y.; Ghatlia, N. D.;
Bossmann, S. H.; Turro, N. J.; Barton, J. K. Science
(Washington, D.C.) 1993, 262, 1025.
9) Schwögler, A.; Burgdorf, L. T.; Carell, T. Angew. Chem. Int.
Ed. 2000, 39, 3918.
(
(
2
6
pyrene-modified nucleosides 1 and 2.
In this communication, we present a new approach for the
synthesis of pyrene-modified nucleosides via palladium-
catalyzed Suzuki–Miyaura-type cross couplings. This
protocol is very versatile and can be extended to other nu-
cleosides as well as to other aryl boronic acids. The two
synthesized pyrene-modified nucleosides 1 and 2 are suit-
able as nucleoside models for electron vs. hole transfer.
(
10) (a) Giese, B.; Spichty, M. Chem. Phys. Chem 2000, 1, 195.
(b) Giese, B.; Amaudrut, J.; Köhler, A.-K.; Spormann, M.;
Wessely, S. Nature (London) 2001, 412, 318.
11) Kool, E. T.; Morales, J. C.; Guckian, K. M. Angew. Chem.
Int. Ed. 2000, 39, 990.
(
(
12) Kubota, T.; Kano, J.; Uno, B.; Konse, T. Bull. Chem. Soc.
Jpn. 1987, 60, 3865.
(
(
13) Hissung, A.; Sonntag, C. Int. J. Radiat. Biol. 1979, 35, 449.
14) Steenken, S.; Jovanovic, S. V. J. Am. Chem. Soc. 1997, 119,
Acknowledgement
617.
We are grateful to Prof. Horst Kessler, Technical University of Mu-
nich, for his generous support.
(15) Netzel, T. L.; Zhao, M.; Nafisi, K.; Headrick, J.; Sigman, M.
S.; Eaton, B. E. J. Am. Chem. Soc. 1995, 117, 9119.
(
16) (a) O’Connor, D.; Shafirovich, V. Y.; Geacintov, N. E. J.
Phys. Chem. 1994, 98, 9831. (b) Shafirovich, V. Y.;
References
Courtney, S. H.; Ya, N.; Geacintov, N. E. J. Am. Chem. Soc.
1
995, 117, 4920.
17) Havelková, M.; Dvorák, D.; Hocek, M. Synthesis 2001,
704.
(
1) (a) Arkin, M. R.; Stemp, E. D. A.; Holmlin, R. E.; Barton, J.
(
(
K.; Hörmann, A.; Olson, E. J. C.; Barbara, P. F. Science
1
1
996, 273, 475. (b) Fukui, K.; Tanaka, K. Angew. Chem. Int.
Ed. 1998, 37, 158. (c) Kelley, S. O.; Barton, J. K. Science
999, 283, 375. (d) Jean, J. M.; Hall, K. B. Proc. Natl. Acad.
18) The crude product was purified by column chromatography
on silica gel (hexane:EtOAc = 20:1, then EtOH) yielding a
1
pale yellow solid. R = 0.42 (hexane:EtOAc = 3:1). All
f
Sci. U.S.A. 2001, 98, 37. (e) Kawai, M.; Lee, M. J.; Evans,
K. O.; Nordlund, T. M. J. Fluoresc. 2001, 11, 23.
spectroscopic data of 3 were in agreement with the published
data in: (a) Suenaga, H.; Nakashima, K.; Mizuno, T.;
Takeuchi, M.; Hamachi, I.; Shinkai, S. J. Chem. Soc., Perkin
Trans. 1 1998, 1263. (b) Beinhoff, M.; Weigel, W.; Jurczok,
M.; Rettig, W.; Modrakowski, C.; Brüdgam, I.; Hartl, H.;
Schlüter, A. D. Eur. J. Org. Chem. 2001, 3819.
(
f) Larsen, O. F. A.; van Stokkum, I. H. M.; Gobets, B.; van
Grondelle, R.; van Amerongen, H. Biophys. J. 2001, 81,
115.
2) (a) Stemp, E. D. A. J. Am. Chem. Soc. 1997, 119, 2921.
b) Lewis, F. D.; Liu, X.; Liu, J.; Miller, S. E.; Hayes, R. T.;
Wasielewski, M. R. Nature (London) 2000, 406, 51.
c) Wan, C.; Fiebig, T.; Schiemann, O.; Barton, J. K.;
Zewail, A. H. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 14052.
d) Shafirovich, V.; Dourandin, A.; Huang, W.; Luneva, N.
P.; Geacintov, N. E. J. Phys. Chem. B 1999, 103, 10924.
e) Wagenknecht, H.-A.; Rajski, S. R.; Pascaly, M.; Stemp,
E. D. A.; Barton, J. K. J. Am. Chem. Soc. 2001, 123, 4400.
f) Hess, S.; Götz, M.; Davis, W. B.; Michel-Beyerle, M.-E.
1
(
(
(
19) The crude product was purified by column chromatography
on silica gel (CH Cl /acetone = 4:1) yielding a white solid.
2
2
(
R = 0.74 (CH Cl /acetone = 4:1). All spectroscopic data of
f
2
2
6
were in agreement with the published data in: Robins, M.
(
J.; Barr, P. J. J. Org. Chem. 1983, 48, 1854.
(
20) The crude product was purified by column chromatography
on silica gel (CH Cl /acetone = 4:1 then EtOAc/
(
2
2
MeOH = 10:1) yielding a pale yellow solid (70%).
Analytical HPLC (RP-18 column, gradient A/B = 10:90 to
(
J. Am. Chem. Soc. 2001, 123, 10046. (g) Lewis, F. D.; Wu,
Y. J. Photochem. Photobiol., C 2001, 2, 1.
9
0
9
0:10 over 45 min, A = MeCN + 0.1% TFA, B = H O +
.1% TFA) was performed to ensure the purity of 1 of >
2
(
(
3) Schiemann, O.; Turro, N. J.; Barton, J. K. J. Phys. Chem. B
9.5%. Spectroscopical Data of 1: R = 0.65 (EtOAc/MeOH/
f
2000, 104, 7214.
H O = 10:1:0.5). NMR signals were assigned based on 2D
2
4) (a) Arkin, M. R.; Stemp, E. D. A.; Coates Pulver, S.; Barton,
J. K. Chem. Biol. 1997, 4, 389. (b) Nakatani, K.; Dohno, C.;
Saito, I. J. Am. Chem. Soc. 1999, 121, 10854. (c) Williams,
T. T.; Odom, D. T.; Barton, J. K. J. Am. Chem. Soc. 2000,
1
NMR measurements (DQF-COSY, HMQC). H NMR (500
MHz, CD OD): = 2.29 (m, J = 6.4 Hz, 2 H, 2 -H), 3.50–
3
3.60 (ddd, J = 12.0 Hz, 3.3 Hz, 2 H, 5 -H), 3.84 (m, J = 3.2
Hz, 1 H, 3 -H), 4.31 (m, J = 4.3 Hz, 1 H, 4 -H), 6.35 (t,
122, 9048. (d) Schuster, G. B. Acc. Chem. Res. 2000, 33,
J = 6.6 Hz, 1 H, 1 -H), 7.84–8.14 (m, 9 H, Pyren-H), 8.21 (s,
253. (e) Giese, B. Acc. Chem. Res. 2000, 33, 613.
1
1
H, H-6) ppm; additional signals in H NMR (250 MHz, d -
6
(
5) (a) O’Neill, P.; Fielden, M. Adv. Radiat. Biol. 1993, 17, 53.
b) Wang, D.; Kreutzer, D. A.; Essigmann, J. M. Mutat. Res.
998, 400, 99.
6) (a) Núñez, M. E.; Hall, D. B.; Barton, J. K. Chem. Biol. 1999,
, 85. (b) Henderson, P. T.; Jones, D.; Hampikian, G.;
Schuster, G. B. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 8353.
DMSO): = 4.79 (t, 1 H, 5 -OH), 5.24 (d, 1 H, 3 -OH), 11.64
(
1
1
3
1
(
s, br, 1 H, NH) ppm. C{ H} NMR (75 MHz, CD OD):
3
=
174.87, 174.13, 167.41, 163.91, 153.37, 153.15, 144.63,
(
1
1
44.07, 134.89, 134.29, 134.13, 133.93, 131.21, 131.01,
30.45, 129.49, 127.94, 126.83, 103.76, 104.41, 90.16 (4 -
6
C), 87.76 (1 -C), 73.42 (3 -C), 62.67 (5 -H), 42.52 (2 -C)
+
+
ppm. ESI-MS: m/z = 429 [M + H] , 451 [M + Na] , 857 [2
M + H] , 879 [2 M + Na] .
+
+
Synlett 2002, No. 5, 687–691 ISSN 0936-5214 © Thieme Stuttgart · New York