ACS Catalysis
Page 8 of 10
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(8) Lee, C. Y.; Farha, O. K.; Hong, B. J.; Sarjeant, A. A.; Nguyen, S.
effect of MOF matrixes, photocatalyst@MOFs showed
fascinating heterogeneous catalytic activity for the
reaction of aerobic oxidation of benzyl halides and the
cyclization of tertiary anilines and maleimides under
visible light. Interestingly, photocatalyst@MOFs
exhibited boosted photocatalytic activity compared with
their homogenous photocatalyst counterparts. It could be
because that the pores of MOFs can effectively disperse
the photocatalyst and facilitate the transport of reactants
and products, which is necessary to the high catalytic
activity. Moreover, we found the template-directed
strategy to convert homogenous catalysts into
heterogeneous systems showed high generality and can
be extended to more MOF or photocatalyst systems. This
research points out a new avenue to prepare highly
efficient heterogeneous photocatalysts and broaden the
catalytic application of MOF materials.
T.; Hupp, J. T. Light-Harvesting Metal-Organic Frameworks (MOFs):
Efficient Strut-to-Strut Energy Transfer in Bodipy and Porphyrin-
Based MOFs. J. Am. Chem. Soc. 2011, 133, 15858-15861.
(9) Shen, J. Q.; Liao, P. Q.; Zhou, D. D.; He, C. T.; Wu, J. X.; Zhang,
W. X.; Zhang, J. P.; Chen, X. M. Modular and Stepwise Synthesis of a
Hybrid Metal-Organic Framework for Efficient Electrocatalytic
Oxygen Evolution. J. Am. Chem. Soc. 2017, 139, 1778-1781.
(10) Xue, M.; Zhang, Z. J.; Xiang, S. C.; Jin, Z.; Liang, C. D.; Zhu,
G. S.; Qiu, S. L.; Chen, B. L. Selective Gas Adsorption within a Five-
Connected Porous Metal-Organic Framework. J. Mater. Chem. 2010,
20, 3984–3988.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(11) Yang, S. H.; Lin, X.; Blake, A. J.; Walker, G. S.; Hubberstey, P.;
Champness, N. R.; Schröder, M. Cation-Induced Kinetic Trapping and
Enhanced Hydrogen Adsorption in a Modulated Anionic Metal-
Organic Framework. Nat. Chem. 2009, 1, 487–493.
(12) Liao, Y. J.; Zhang, L.; Weston, M. H.; Morris, W.; Hupp J. T.;
Farha O. K. Tuning Ethylene Gas Adsorption via Metal Node
Modulation: Cu-MOF-74 for a High Ethylene Deliverable Capacity.
Chem. Commun. 2017, 53, 9376–9379.
(13) Liu, J. W.; Chen, L. F.; Cui, H.; Zhang, J. Y.; Zhang, L.; Su, C.
Y. Applications of Metal-Organic Frameworks in Heterogeneous
Supramolecular Catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061.
ASSOCIATED CONTENT
(14) Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkovc, A.;
Supporting Information. Synthesis, supplementary structural
figures, and supplementary characterization data, crystal
data (CIF). Supporting information for this article is given
via a link at the end of the document.
Verpoort, F. Metal-Organic Frameworks: Versatile Heterogeneous
Catalysts for Efficient Catalytic Organic Transformations. Chem. Soc.
Rev. 2015, 44, 6804-6849.
(15) Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral Metal-Organic
Frameworks for Asymmetric Heterogeneous Catalysis. Chem. Rev.
2
012, 112, 1196-1231.
16) Ma, L. Q.; Abney, C.; Lin, W. B. Enantioselective Catalysis with
AUTHOR INFORMATION
(
Homochiral Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38,
1248-1256.
(17) Lykourinou, V.; Chen, Y.; Wang, X. S.; Meng, L.; Hoang, T.;
Ming, L. J.; Musselman, R. L.; Ma, S. Q. Immobilization of MP-11 into
a Mesoporous Metal-Organic Framework, MP-11@mesoMOF: A New
Platform for Enzymatic Catalysis. J. Am. Chem. Soc. 2011, 133, 10382-
10385.
(18) An, J.; Geib, S. J.; Rosi, N. L. Cation-Triggered Drug Release
from a Porous Zinc-Adeninate Metal-Organic Framework. J. Am.
Chem. Soc. 2009, 131, 8376-8377.
ACKNOWLEDGMENT
The authors acknowledge the support of National Natural
Science Foundation of China (21601093) and Tianjin
Natural Science Foundation of China (18JCZDJC37300).
(19) Horcajada, P.; Serre, C.; Vallet-Regi, M.; Sebban, M.; Taulelle,
REFERENCES
F.; Férey, G. Metal-Organic Frameworks as Efficient Materials for
Drug Delivery. Angew. Chem. Int. Ed. 2006, 45, 5974-5978.
(
1) König, B. Photocatalysis in Organic Synthesis-Past, Present, and
Future. Eur. J. Org. Chem. 2017, 2017, 1979-1981.
2) Dadashi-Silab, S.; Doran, S.; Yagci, Y. Photoinduced Electron
Transfer Reactions for Macromolecular Syntheses. Chem. Rev. 2016,
16, 10212-10275.
3) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. Photoredox
(20) Martell, J. D.; Porter-Zasada, L. B.; Forse, A. C.; Siegelman, R.
L.; Gonzalez, M. I.; Oktawiec, J.; Runčevski, T.; Xu, J. W.; Srebro-
Hooper, M.; Milner, P. J.; Colwell, K. A.; Autschbach, J.; Reimer, J.
A.; Long, J. R. Enantioselective Recognition of Ammonium
Carbamates in a Chiral Metal-Organic Framework. J. Am. Chem. Soc.
017, 139, 16000-16012.
21) Xiao, J. D.; Jiang, H. L. Metal-Organic Frameworks for
Photocatalysis and Photothermal Catalysis. Acc. Chem. Res. 2019, 52,
56-366.
(22) Zeng, L; Guo, X. Y.; He C, Duan, C. Y. Metal-Organic
Frameworks: Versatile Materials for Heterogeneous Photocatalysis.
ACS Catal. 2016, 6, 7935-7947.
23) Jiao, L.; Wang, Y.; Jiang H. L.; Xu, Q. Metal-Organic Frameworks
as Platforms for Catalytic Applications. Adv. Mater. 2018, 30, 1703663.
24) Liu, Y. Y.; Moon, S. Y.; Hupp, J. T.; Farha, O. K. Dual-Function
MetalOrganic Framework as a Versatile Catalyst for Detoxifying
Chemical Warfare Agent Simulants. ACS Nano. 2015, 9, 12358-12364.
25) Wang, C.; deKrafft, K. E.; Lin, W. B. Pt
Nanoparticles@Photoactive Metal-Organic Frameworks: Efficient
Hydrogen Evolution via Synergistic Photoexcitation and Electron
Supported Selective Ethylene Dimerization Single-Site Catalysts
(
1
(
2
(
Catalysis in Organic Chemistry. J. Org. Chem. 2016, 81, 6898-6926.
(4) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.;
von Zelewsky, A. Ru(II) Polypyridine Complexes: Photophysics,
Photochemistry, Eletrochemistry, and Chemiluminescence. Coord.
Chem. Rev. 1988, 84, 85.
3
(5) Nicewicz, D. A.; MacMillan, D. W. C. Merging Photoredox
Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of
Aldehydes. Science 2008, 322, 77-80.
(
(6) a) Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. Efficient
(
Visible Light Photocatalysis of [2+2] Enone Cycloadditions. J. Am.
Chem. Soc. 2008, 130, 12886−12887.; b) Narayanam, J. M. R.; Tucker,
J. W.; Stephenson, C. R. J. Electron-Transfer Photoredox Catalysis:
Development of a Tin-Free Reductive Dehalogenation Reaction. J. Am.
Chem. Soc. 2009, 131, 8756−8757.; c) Freeman, D. B.; Furst, L.;
Condie, A. G.; Stephenson, C. R. J. Functionally Diverse Nucleophilic
Trapping of Iminium Intermediates Generated Utilizing Visible Light.
Org. Lett. 2012, 14, 94−97.
(
(7) García, H.; Navalón, S. Metal-Organic Frameworks: Applications
in Separations and Catalysis. 2018, 479-498.
ACS Paragon Plus Environment