10.1002/chem.202002075
Chemistry - A European Journal
1
2
3
4
5
6
7
8
compartment was filled with a solution of ferrocene
(50 mg) in [D8]-thf (3 mL) as sacrificial reagent.
After electrolysis the liquid phase of both
compartments of the cell was transferred into a
Schlenk flask, which was frozen in liquid nitrogen.
The Schlenk flask was connected via a glassbridge
to a second flask. A static, high vacuum was applied
on the whole system and the frozen electrolysis
9 solution was slowly warmed up, whereas the second
10 flask was cooled with liquid nitrogen in order to
11 condense all volatile compounds. The mixture was
1
12 analysed by H-NMR spectroscopy afterwards. All
13 alcohols are literature known and thus, the products
14 were identified by comparison with the original data.
15 References
1
a) M. Hudlický, Reductions in organic chemistry,
R. McKone, S. C. Marinescu, B. S. Brunschwig, J.
R. Winkler, H. B. Gray, Chem. Sci. 2014, 5, 865-
878; c) D. L. DuBois, Inorg. Chem. 2014, 53, 3935-
3960; d) I. Siewert, Chem. Eur. J. 2015, 21, 15078-
15091.
2. ed.; ACS Monograph 188; American Chemical
Society: Washington, DC, 1996; b) K. Weissermel,
H.-J. Arpe, Industrial Organic Chemistry; Wiley-
VCH: Hoboken, 2008; c) G. A. Molander, P.
Knochel, Eds. Comprehensive organic synthesis: II,
Second edition; Elsevier: Amsterdam, 2014.
8 See SI for detailed calculations. a) G. S. Parks, K.
K. Kelley, H. M. Huffman, J. Am. Chem. Soc. 1929,
51, 1969-1973; b) J. Chao, F. D. Rossini, J. Chem.
& Eng. Data 1965, 10, 374-379; c) K. B. Wiberg, L.
S. Crocker, K. M. Morgan, J. Am. Chem. Soc. 1991,
113, 3447-3450; d) M.W. Chase Jr., NIST-JANAF
Thermochemical Tables, 4th Edition, J. Phys. Chem.
Ref. Data, Monograph 9, 1998, 1310.
2
Selected overview articles: a) K. Junge, K.
Schröder, M. Beller, Chem. Commun. 2011, 47,
4849–4859; b) P. J. Chirik, Acc. Chem. Res. 2015,
48, 1687–1695; c) R. H. Morris, Acc. of Chem. Res.
2015, 48, 1494–1502; d) T. Zell, D.Milstein, Acc.
Chem. Res. 2015, 48, 1979–1994; e) S. Chakraborty,
P. Bhattacharya, H. Dai, H. Guan, Acc. Chem. Res.
2015, 48, 1995–2003; f) F. Kallmeier, R. Kempe,
Angew. Chem., Int. Ed. 2018, 57, 46–60; g) L. Alig,
M. Fritz, S. Schneider, Chem. Rev. 2019, 119, 2681-
2751; h) J. F. Teichert, Ed. Homogeneous
hydrogenation with non-precious catalysts; Wiley-
VCH Verlag: Weinheim, Germany, 2020.
9
See SI for detailed calculations. a) J. T.
Muckerman, P. Achord, C. Creutz, D. E. Polyansky,
E. Fujita, Proc. Natl. Acad. Sci. U S A 2012, 109,
15657-15662; b) E. Rossini, A. D. Bochevarov, E.
W. Knapp, ACS Omega 2018, 3, 1653-1662; c) H. J.
Campbell, J. T. Edward, Can. J. Chem. 1960, 38,
2109-2116.
3 P. L. Spath, M. K. Mann, Life Cycle Assessment of
Hydrogen Production via Natural Gas Steam
Reforming, Report No. NREL/TP-570-27637,
National Renewable Energy Laboratory, Golden,
CO, 2001, doi:10.2172/764485.
10 a) F. D. Popp, H. P. Schultz, Chem. Rev. 1962, 62,
19-40; b) J. B. Sperry, D. L. Wright, Chem. Soc. Rev.
2006, 35, 605-621.
11
Homogeneous functionalisation leading to the
alcohol: a) A. K. Yadav, A. Singh, Bull. Chem. Soc.
Jpn. 2002, 75, 587-588; b) A. K. Yadav, M. Manju,
P. R. Chhinpa, Tetrahedron: Asymmetry 2003, 14,
1079-1081.
4
a) R. Ruppert, S. Herrmann, E. Steckhan,
Tetrahedron Lett. 1987, 28, 6583-6586; b) S.
Chardon-Noblat, I. M. F. de Oliveira, J.-C. Moutet,
S. Tingry, J. Mol. Catal. A: Chem. 1995, 99, 13-21;
c) C. Caix, S. Chardon-Noblat, A. Deronzier, J.-C.
Moutet, S. Tingry, J. Organomet. Chem. 1997, 540,
105-111; d) J.-C. Moutet, C. Duboc-Toia, S.
Ménage, S. A Tingry, Adv. Mater. 1998, 10, 665-
667; e) J.-C. Moutet, L. Yao Cho, C. Duboc-Toia, S.
Ménage, E. C. Riesgo, R. P. Thummel, New J. Chem.
1999, 23, 939-944, f) Z. Chen, C. R. Glasson, P. L.
Holland, T. J. Meyer, Phys. Chem. Chem. Phys.
2013, 15, 9503-9507.
12 a) L. H. Klemm, D. R. Olson, J. Org. Chem. 1973,
38, 3390–3394; b) P. Zuman, Microchem. J. 1987,
36, 255–284; c) L. Coche, J. C. Moutet, J. Am. Chem.
Soc. 1987, 109, 6887–6889; d) M. Vilar, J. L.
Oliveira, M. Navarro, Appl. Catal. A 2010, 372, 1–
7; e) Z. Li, S. Kelkar, L. Raycraft, M. Garedew, J. E.
Jackson, D. J. Miller, C. M. Saffron, Green Chem.
2014, 16, 844–852; f) Y. Kwon, K. J. P. Schouten, J.
C. van der Waal, E. de Jong, M. T. M. Koper, ACS
Catal. 2016, 6, 6704–6717; g) X. H. Chadderdon, D.
J. Chadderdon, J. E. Matthiesen, Y. Qiu, J. M.
Carraher, J.-P. Tessonnier, W. Li, J. Am. Chem. Soc.
2017, 139, 14120–14128; h) D. C. Cantu, A. B.
Padmaperuma, M.-T. Nguyen, S. A. Akhade, Y.
Yoon, Y.-G. Wang, M.-S. Lee, V.-A. Glezakou, R.
Rousseau, M. A. A Lilga, ACS Catal. 2018, 8, 7645–
7658; i) X. Huang, L. Zhang, C. Li, L. Tan, Z. Wei,
ACS Catal. 2019, 9, 11307–11316.
5
a) S. R. Waldvogel, B. Janza, Angew. Chem. Int.
Ed. 2014, 53, 7122-7123; b) M. Yan, Y. Kawamata,
P. S. Baran, Chem. Rev. 2017, 117, 13230-13319;
c) K. D. Moeller Chem. Rev. 2018, 118, 4817-4833;
d) S. Möhle, M. Zirbes, E. Rodrigo, T. Gieshoff, A.
Wiebe, S. R. Waldvogel, Angew. Chem. Int. Ed.
2018, 57, 6018-6041; e) R. Francke, R. D. Little,
ChemElectroChem 2019, 6, 4373-4382; f) C.
Werlé, K. Meyer, Organometallics 2019, 38, 1181–
1185; g) G. Hilt, ChemElectroChem 2019, 7, 395-
405.
13
The hydrogenation enthalpy of e.g. acetone is
larger than of isobutene. See SI for detailed
calculations.
6 K. D. Moeller, Chem. Rev. 2018, 118, 4817-4833.
7 a) S. C. Marinescu, J. R. Winkler, H. B. Gray, Proc.
Natl. Acad. Sci. U S A 2012, 109, 15127-15131; b) J.
I. Fokin, A. Denisiuk, C. Würtele, I. Siewert,
14
Inorg. Chem. 2019, 58, 10444-10453.
7
This article is protected by copyright. All rights reserved.